python调用C++实例:用C++对numpy执行BFS(广度优先搜索)

下文的代码可能展示不全,详情请下载文件:用cpp遍历ndarray.rar

问题背景:

现在我有一张二值图test.npy,需要对其闭区域进行孔洞填充,如下图所示:

文件下载链接:用cpp遍历ndarray.rar

用python实现BFS:

def bfs1(im, vis, x, y, xb, yb):
    def legal(tx, ty):
        if tx < xb and tx >= 0 and ty < yb and ty >= 0:
            return True
        else:
            return False

    dx = [0, 0, 1, -1]
    dy = [1, -1, 0, 0]
    q = Queue()
    ls = []
    q.put((x, y))
    flag = True
    while not q.empty():
        tmp = q.get()
        cx, cy = tmp
        vis[cx][cy] = 1
        for i in range(0, 4):
            tx = cx + dx[i]
            ty = cy + dy[i]
            if (legal(tx, ty)):
                if im[tx][ty] == 0 and vis[tx][ty] == 0:
                    q.put((tx, ty))
                    ls.append((tx, ty))
                    vis[tx][ty] = 1
            else:
                flag = False
    if flag:
        for pt in ls:
            tx, ty = pt
            im[tx][ty] = 255

def fillHolePy(im):
    x, y = im.shape[:2]
    ans=im.copy()
    vis = np.zeros([x, y])
    for i in range(0, x):
        for j in range(0, y):
            if vis[i][j] == 0:  # and im[i][j]==0
                bfs1(ans, vis, i, j, x, y)
    return ans

程序执行了0.914

用C++实现BFS:(因为python向cpp传参只能用一维数组,这涉及到多维数组到一维数组的映射,详见我的另一篇博客:numpy中多维数组的绝对索引

int x_s,y_s;

inline int MAP(int x,int y){
    return y_s*x + y;
}


int dx[4]={0, 0, 1, -1};
int dy[4]={1, -1, 0, 0};
int vis[1000*1000];

typedef struct Pt
{
    int x,y;
    Pt(int x,int y):x(x),y(y){
    }
}Pt;


bool legal(int x,int y){
    if(x<x_s && x>=0 && y<y_s && y>=0)
        return true;
    return false;
}

void bfs(int *img,int x,int y){
    queue<Pt> q;
    vector<Pt> v;
    q.push(Pt(x,y));
    bool flag=1;
    int i;
    while(!q.empty()){
        Pt pt=q.front();
        q.pop();
        vis[MAP(x,y)]=1;
        int cx=pt.x,cy=pt.y;
        FF(i,4){
            int tx=cx+dx[i];
            int ty=cy+dy[i];
            if(legal(tx,ty)){
                if(img[MAP(tx,ty)]==0 && vis[MAP(tx,ty)]==0){
                    q.push(Pt(tx,ty));
                    v.push_back(Pt(tx,ty));
                    vis[MAP(tx,ty)]=1;
                }
            }else{
                flag=0;
            }
        }
        if(flag){
            int sz=v.size();
            FF(i,sz){
                int & tx=v[i].x;
                int & ty=v[i].y;
                img[MAP(tx,ty)]=255;
            }
        }
    }
}

void fillHole(int * img,int X,int Y){
    x_s=X,y_s=Y;
    int i,j;
    FF(i,x_s)FF(j,x_s)if(!vis[MAP(i,j)]){
        bfs(img,i,j);
    }
}

下面我们看怎样用python调用cpp。

在上文的cpp中,对想要执行的函数fillHole进行声明:

extern "C" {
    __declspec(dllexport) 
    void fillHole(int * img,int X,int Y)
    ;
}

用g++(mingw64位)编译为dll:

g++ bfs.cpp -shared -o bfs.dll -Wl,--out-implib,bfs.lib
pause

在python中使用numpy的封装加载DLL并且传参调用:

import numpy.ctypeslib as npct

def fillHoleCpp(im):
    array_2d_int32 = npct.ndpointer(dtype=np.int32, ndim=2, flags='CONTIGUOUS')
    dll = npct.load_library("bfs.dll",".")
    bfs=dll.fillHole
    bfs.restype  = None
    bfs.argtypes = [array_2d_int32, c_int, c_int]
    im=im.astype(dtype=np.int32)
    if not im.flags['C_CONTIGUOUS']:
        im = np.ascontiguous(im, dtype=im.dtype)
    X, Y=im.shape
    bfs(im,X,Y)
    return im

查看测试结果:

程序执行了0.058

根据测试cpp比python快了15倍。

 

 

cpp完整代码:

#include <stdio.h>
#include <vector>
#include <queue>
#include <algorithm>

using namespace std;

#define FF(a,b) for(a=0;a<b;a++)

extern "C" {
    __declspec(dllexport) 
    void fillHole(int * img,int X,int Y)
    ;
}

int x_s,y_s;

inline int MAP(int x,int y){
    return y_s*x + y;
}


int dx[4]={0, 0, 1, -1};
int dy[4]={1, -1, 0, 0};
int vis[1000*1000];

typedef struct Pt
{
    int x,y;
    Pt(int x,int y):x(x),y(y){
    }
}Pt;


bool legal(int x,int y){
    if(x<x_s && x>=0 && y<y_s && y>=0)
        return true;
    return false;
}

void bfs(int *img,int x,int y){
    queue<Pt> q;
    vector<Pt> v;
    q.push(Pt(x,y));
    bool flag=1;
    int i;
    while(!q.empty()){
        Pt pt=q.front();
        q.pop();
        vis[MAP(x,y)]=1;
        int cx=pt.x,cy=pt.y;
        FF(i,4){
            int tx=cx+dx[i];
            int ty=cy+dy[i];
            if(legal(tx,ty)){
                if(img[MAP(tx,ty)]==0 && vis[MAP(tx,ty)]==0){
                    q.push(Pt(tx,ty));
                    v.push_back(Pt(tx,ty));
                    vis[MAP(tx,ty)]=1;
                }
            }else{
                flag=0;
            }
        }
        if(flag){
            int sz=v.size();
            FF(i,sz){
                int & tx=v[i].x;
                int & ty=v[i].y;
                img[MAP(tx,ty)]=255;
            }
        }
    }
}

void fillHole(int * img,int X,int Y){
    x_s=X,y_s=Y;
    int i,j;
    FF(i,x_s)FF(j,x_s)if(!vis[MAP(i,j)]){
        bfs(img,i,j);
    }
}

//int main() {
//    return 0;
//}
bfs.cpp

python完整代码:

import numpy as np
import numpy.ctypeslib as npct
import pylab as plt
from queue import Queue
import datetime
from ctypes import *

def bfs1(im, vis, x, y, xb, yb):
    def legal(tx, ty):
        if tx < xb and tx >= 0 and ty < yb and ty >= 0:
            return True
        else:
            return False

    dx = [0, 0, 1, -1]
    dy = [1, -1, 0, 0]
    q = Queue()
    ls = []
    q.put((x, y))
    flag = True
    while not q.empty():
        tmp = q.get()
        cx, cy = tmp
        vis[cx][cy] = 1
        for i in range(0, 4):
            tx = cx + dx[i]
            ty = cy + dy[i]
            if (legal(tx, ty)):
                if im[tx][ty] == 0 and vis[tx][ty] == 0:
                    q.put((tx, ty))
                    ls.append((tx, ty))
                    vis[tx][ty] = 1
            else:
                flag = False
    if flag:
        for pt in ls:
            tx, ty = pt
            im[tx][ty] = 255

def fillHolePy(im):
    x, y = im.shape[:2]
    ans=im.copy()
    vis = np.zeros([x, y])
    for i in range(0, x):
        for j in range(0, y):
            if vis[i][j] == 0:  # and im[i][j]==0
                bfs1(ans, vis, i, j, x, y)
    return ans

import numpy.ctypeslib as npct

def fillHoleCpp(im):
    array_2d_int32 = npct.ndpointer(dtype=np.int32, ndim=2, flags='CONTIGUOUS')
    dll = npct.load_library("bfs.dll",".")
    bfs=dll.fillHole
    bfs.restype  = None
    bfs.argtypes = [array_2d_int32, c_int, c_int]
    im=im.astype(dtype=np.int32)
    if not im.flags['C_CONTIGUOUS']:
        im = np.ascontiguous(im, dtype=im.dtype)
    X, Y=im.shape
    bfs(im,X,Y)
    return im

if __name__ == '__main__':
    img=np.load('test.npy')
    plt.subplot(121)
    plt.title('before fill')
    plt.imshow(img)
    starttime = datetime.datetime.now()
    img=fillHoleCpp(img)   #使用BFS(广度优先搜索算法)对原图像进行处理
    endtime = datetime.datetime.now()
    print("程序执行了%.03f秒" % ((endtime - starttime).microseconds / 1000000))
    # exit(0)
    plt.subplot(122)
    plt.title('after fill')
    plt.imshow(img)
    plt.show()
dealArray.py

参考资料:

https://segmentfault.com/a/1190000000479951

 

posted @ 2018-04-19 23:52  TQCAI  阅读(2021)  评论(0编辑  收藏  举报