已知后序和中序输出前序(二叉树)

已知后序和中序输出前序(二叉树)

给出二叉树的后序遍历和中序遍历,要求输出二叉树的前序遍历:

后序:2 3 1 5 7 6 4

中序:1 2 3 4 5 6 7

分析:由后序遍历的特性可知,后序的最后一个总是根结点,令root_index_in在中序中找到该根结点,则root_index_in把中序分为两部分,左边是左子树右边是右子树。因为是输出前序(根左右),所以先打印出当前根结点,然后打印左子树,再打印右子树。左子树在后序中的根结点为root_index_post - (in_end - root_index_in) - 1,即为当前根结点 - (右子树的结点树) - 1;左子树在中序中的起始索引为in_start,末尾索引为root_index_in - 1。右子树的根节点为当前根节点的前一个结点,即为root_index_post - 1;右子树的起始索引为root_index_in + 1,末尾索引为in_end

以下代码为输出层序遍历,将level.emplace(tree_index, root)改为cout << root " " 即可输出前序遍历

#include <iostream>
#include <map>
using namespace std;
int post_order[30] = {0};
int in_order[30] = {0};
map<int, int> level;
int n;

inline void dfs(int root_index_post, int in_start, int in_end, int tree_index)
{
    if (in_start > in_end)
        return;
    int root = post_order[root_index_post];
    level.emplace(tree_index, root);
    int root_index_in = 0;
    while (in_order[root_index_in] != root)
        root_index_in++;
    dfs(root_index_post - in_end + root_index_in - 1, in_start, root_index_in - 1, 2 * tree_index);
    dfs(root_index_post - 1, root_index_in + 1, in_end, 2 * tree_index + 1);
    return;
}

int main()
{
    cin >> n;
    for (int i = 0; i < n; i++)
        cin >> post_order[i];
    for (int i = 0; i < n; i++)
        cin >> in_order[i];
    dfs(n - 1, 0, n - 1, 1);
    int count = 0;
    for (auto it = level.begin(); it != level.end(); it++)
    {
        count++;
        if (count != n)
            cout << it->second << " ";
        else
            cout << it->second << endl;
    }
    return 0;
}
posted @ 2022-10-25 19:04  TNTksals  阅读(35)  评论(0编辑  收藏  举报