Django 多表操作
Django 多表操作
一 表关系回顾
在讲解MySQL时,我们提到,把应用程序的所有数据都放在一张表里是极不合理的。
比如我们开发一个员工管理系统,在数据库里只创建一张员工信息表,该表有四个字段:工号、姓名、部门名、部门职能描述,此时若公司有1万名员工,但只有3个部门,因为每一名员工后都需要跟着部门信息(部门名、部门职能),所以将会导致部门信息出现大量重复、浪费空间。
解决方法就是将数据存放于不同的表中,然后基于foreign key建立表之间的关联关系。
细说的话,表之间存在三种关系:多对一、一对一、多对多,那如何确定两张表之间的关系呢?按照下述步骤操作即可
左表<------------------------------->右表
# 步骤一:先分析
#分析1、先站在左表的角度
是否左表的多条记录可以对应右表的一条记录
#分析2、再站在右表的角度去找
是否右表的多条记录可以对应左表的一条记录
# 步骤二:后确定关系
# 多对一
如果只有"分析1"成立,那么可以确定两张表的关系是:左表多对一右表,关联字段应该创建在左表中,然后foreign key 右表一个字段(通常是id)
如果只有"分析2"成立,那么可以确定两张表的关系是:右表多对一左表,关联字段应该创建在右表中,然后foreign key 左表一个字段(通常是id)
# 一对一
如果"分析1"和"分析2"都不成立,而是左表的一条记录唯一对应右表的一条记录,反之亦然。这种情况很简单,就是在左表foreign key右表的基础上,将左表的关联字段设置成unique即可
# 多对多
如果"分析1"和"分析2"同时成立,则证明这两张表是一个双向的多对一,即多对多,需要创建一张单独的新表来专门存放二者的关系,关联字段应该创建在新表中,然后在新表中分别foreign key两张表的id字段
我们以一个图书管理系统为背景,设计了下述四张表,让我们来找一找它们之间的关系
书籍表:app01_book
出版社表:app01_publish
作者表:app01_author
作者详细信息表:app01_authordetail
app01_book与app01_publish
找关系
左表(app01_book)<------------------------------->右表(app01_publish)
# 步骤一:
#分析1、先站在左表的角度
左表的多条记录代表多版本书籍,右表的一条记录代表一个出版社,多本书籍对应同一个出版社 ✔️
#分析2、再站在右表的角度去找
右表的多条记录代表多个出版社,左表的一条记录代表一本书,多个出版社不能出版同一本书 ✘
# 步骤二:后确定关系
# 多对一
只有"分析1"成立,那么可以确定两张表的关系是:左表(app01_book)多对一右表(app01_publish),关联字段应该创建在左表(app01_book)中,然后foreign key 右表(app01_publish)的id字段
sql语句
# 1、由于foreign key的影响,必须先创建被关联表
CREATE TABLE app01_publish (
id INT PRIMARY KEY auto_increment,
name VARCHAR (20)
);
# 2、才能创建出关联表
CREATE TABLE app01_book (
id INT PRIMARY KEY auto_increment,
title VARCHAR (20),
price DECIMAL (8, 2),
pub_date DATE,
publish_id INT, # 新增关联字段
FOREIGN KEY (publish_id) REFERENCES app01_publish (id)
ON UPDATE CASCADE ON DELETE CASCADE
);
app01_author与app01_authordetail
找关系
左表(app01_author)<------------------------------->右表(app01_authordetail)
一个作者唯一对应一条自己的详情信息,反之亦然,所以两张表是一对一的关系。在左表中新增关联字段并添加unique约束,然后foreign key右表
sql语句
# 1、由于foreign key的影响,必须先创建被关联表
CREATE TABLE app01_authordetail (
id INT PRIMARY KEY auto_increment,
tel VARCHAR (20)
);
# 2、才能创建出关联表
CREATE TABLE app01_author (
id INT PRIMARY KEY auto_increment,
name VARCHAR (20),
age INT,
authordetail_id INT UNIQUE, # 新增关联字段,并添加唯一性约束unique
FOREIGN KEY (authordetail_id) REFERENCES app01_authordetail (id)
ON UPDATE CASCADE ON DELETE CASCADE
);
app01_book与app01_author
找关系
左表(app01_book)<------------------------------->右表(app01_author)
# 步骤一:
#分析1、先站在左表的角度
左表的多条记录代表多版本书籍,右表的一条记录代表一个作者,多本书籍可以由同一个作者编写 ✔️
#分析2、再站在右表的角度去找
右表的多条记录代表多个作者,左表的一条记录代表一本书,多个作者可以合作编写同一本书 ✔️
# 步骤二:后确定关系
# 多对多
"分析1"和"分析2"同时成立,证明这两张表是多对多的关系,需要创建一张单独的新表来专门存放二者的关系,关联字段应该创建在新表中,然后在新表中分别foreign key两张表的id字段
sql语句
# 1、创建被关联表一:app01_book,例1中已创建
# 2、创建被关联表二:app01_author,例2中已创建
# 3、创建新表,存放app01_book于app01_author的关联关系
CREATE TABLE app01_book_authors (
id INT PRIMARY KEY auto_increment,
book_id INT, # 新增关联字段,用来关联表app01_book
author_id INT, # 新增关联字段,用来关联表app01_author
FOREIGN KEY (book_id) REFERENCES app01_book (id) ON UPDATE CASCADE ON DELETE CASCADE,
FOREIGN KEY (author_id) REFERENCES app01_author (id) ON UPDATE CASCADE ON DELETE CASCADE
);
上述三个例子中生成的表如下
二 创建模型
模型类如下
from django.db import models
# 表app01_publish
class Publish(models.Model):
nid = models.AutoField(primary_key=True)
name = models.CharField(max_length=20)
# 表app01_book
class Book(models.Model):
nid = models.AutoField(primary_key=True)
title = models.CharField(max_length=20)
price = models.DecimalField(max_digits=8, decimal_places=2)
pub_date = models.DateField()
# 表app01_book多对一表app01_publish,参数to指定模型名,参数to_field指定要关联的那个字段
publish = models.ForeignKey(to='Publish',to_field='nid',on_delete=models.CASCADE)
# 我们自己写sql时,针对书籍表与作者表的多对关系,需要自己创建新表,而基于django的orm,下面这一行代码可以帮我们自动创建那张关系表
authors=models.ManyToManyField(to='Author')
# 变量名为authors,则新表名为app01_book_authors,若变量名为xxx,则新表名为app01_book_xxx
# 表app01_author
class Author(models.Model):
nid = models.AutoField(primary_key=True)
name = models.CharField(max_length=20)
age = models.IntegerField()
# 表app01_author一对一表app01_authordetail
author_detail = models.OneToOneField(to='AuthorDetail',to_field='nid',unique=True,on_delete=models.CASCADE)
# 表app01_authordetail
class AuthorDetail(models.Model):
nid = models.AutoField(primary_key=True)
tel = models.CharField(max_length=20)
强调:
在创建关联时,针对参数to,如果传入的是字符串(to="模型名"),则模型类的定义不区分先后顺序,如果传入的是模型名(to=Author),则Author类必须事先定义
注意事项:
- 表的名称
myapp_modelName
,是根据 模型中的元数据自动生成的,也可以覆写为别的名称 id
字段是自动添加的- 对于外键字段,Django 会在字段名上添加
"_id"
来创建数据库中的列名 - 这个例子中的
CREATE TABLE
SQL 语句使用PostgreSQL 语法格式,要注意的是Django 会根据settings 中指定的数据库类型来使用相应的SQL 语句。 - 定义好模型之后,你需要告诉Django _使用_这些模型。你要做的就是修改配置文件中的INSTALL_APPSZ中设置,在其中添加
models.py
所在应用的名称。 - 外键字段 ForeignKey 有一个 null=True 的设置(它允许外键接受空值 NULL),你可以赋给它空值 None 。
- 关联字段与外键约束没有必然的联系(建管理字段是为了进行查询,建约束是为了不出现脏数据)
三 添加、删除、修改记录
3.1 添加记录
!!强调!!:上图所示的表名、字段名都是mysql中的真实表/物理表,而我们下述所示所有操作,都是通过模型类来操作物理表,例如无论增删改查,所使用的字段名都模型类中的字段
按照上图所示,由于foreign key的关系,我们需要事先往app01_publish与app01_authordetail里插入记录
# 1、需求:通过模型Publish往表app01_publish里插入三家出版社
Publish.objects.create(name='北京出版社')
Publish.objects.create(name='长春出版社')
Publish.objects.create(name='大连出版社')
# 2、需求:通过模型AuthorDetail往表app01_authordetail里插入三条作者详情
AuthorDetail.objects.create(tel='18611312331')
AuthorDetail.objects.create(tel='15033413881')
AuthorDetail.objects.create(tel='13011453220')
按照上图所示,插入时会涉及到多张表,我们同样分三种情况来介绍
1、多对一:app01_book与app01_publish
# 需求:书籍(葵花宝典、菊花宝典、桃花宝典)都是在北京出版社出版的
# 1、先通过模型Publish从出版社表app01_publish查出北京出版社
publish_obj=Publish.objects.filter(name='北京出版社').first()
# 上述代码也可以简写为:publish_obj=Publish.objects.get(name='北京出版社')
# 2、再通过模型Book往书籍表app01_book里插入三本书籍与出版社的对应关系
# 方式一:使用publish参数指定关联
book_obj1=Book.objects.create(title='葵花宝典',price=2000,pub_date='1985-3-11',publish=publish_obj)
book_obj2=Book.objects.create(title='菊花宝典',price=3000,pub_date='1990-1-21',publish=publish_obj)
book_obj3=Book.objects.create(title='桃花宝典',price=4000,pub_date='1991-1-23',publish=publish_obj)
# 方式二:使用publish_id参数指定关联
book_obj1=Book.objects.create(title='葵花宝典',price=2000,pub_date='1985-3-11',publish_id=publish_obj.nid)
book_obj2=Book.objects.create(title='菊花宝典',price=3000,pub_date='1990-1-21',publish_id=1) # 在已经出版社id的情况下,可以直接指定
book_obj3=Book.objects.create(title='桃花宝典',price=4000,pub_date='1991-1-23',publish_id=1)
# 注意:无论方式一还是方式二得到的书籍对象book_obj1、book_obj2、book_obj3
# 都可以调用publish字段来访问关联的那一个出版社对象
# 都可以调用publish_id来访问关联的那一个出版社对象的nid
print(book_obj1.publish,book_obj1.publish_id)
print(book_obj2.publish,book_obj2.publish_id)
print(book_obj3.publish,book_obj3.publish_id)
# 三本书关联的是同一个出版社,所以输出结果均相同
参照上述步骤,把剩余三本书与出版社的对应关系也插入
book_obj1 = Book.objects.create(title='玉女心经', price=5000, pub_date='1988-3-24', publish_id=2)
book_obj2 = Book.objects.create(title='玉男心经', price=3000, pub_date='1985-6-17', publish_id=2)
book_obj3 = Book.objects.create(title='九阴真经', price=6000, pub_date='1983-8-17', publish_id=3)
2、一对一:app01_author与app01_authordetail
# 需求:插入三个作者,并与作者详情表一一对应
# 由于作者详情表我们已经事先创建好记录,所以只需要往作者表插入记录即可
# 方式一:需要事先过滤出作者详情的对象,然后通过模型Author的字段author来指定要关联的作者详情对象(略)
# 方式二:确定作者详情对象的id,然后通过模型Author通过字段author_id来指定关联关系,
Author.objects.create(name='egon',age=18,author_detail_id=1)
Author.objects.create(name='kevin',age=38,author_detail_id=2)
Author.objects.create(name='rose',age=28,author_detail_id=3)
3、多对多:app01_book与app01_author
# 我们参照物理表app01_book_authors制定需求,需要创建如下关系
# 1、葵花宝典的作者为:egon、kevin
# 2、菊花宝典的作者为:egon、kevin、rose
# 3、桃花宝典的作者为:egon、kevin
# 4、玉女心经的作者为:kevin、rose
# 5、玉男心经的作者为:kevin
# 6、九阴真经的作者为:egon、rose
# 需要创建出上述关系,具体做法如下
# 1、先获取书籍对象
book_obj1=Book.objects.get(title='葵花宝典')
book_obj2=Book.objects.get(title='菊花宝典')
book_obj3=Book.objects.get(title='桃花宝典')
book_obj4=Book.objects.get(title='玉女心经')
book_obj5=Book.objects.get(title='玉男心经')
book_obj6=Book.objects.get(title='九阴真经')
# 2、然后获取作者对象
egon=Author.objects.get(name='egon')
kevin=Author.objects.get(name='kevin')
rose=Author.objects.get(name='rose')
# 3、最后依次创建上述关系:在原生SQL中多对多关系涉及到操作第三张关系表,但是在ORM中我们只需要操作模型类Book下的字段author即可
book_obj1.authors.add(egon,kevin)
book_obj2.authors.add(egon,kevin,rose)
book_obj3.authors.add(egon,kevin)
book_obj4.authors.add(kevin,rose)
book_obj5.authors.add(kevin)
book_obj6.authors.add(egon,rose)
可以通过书籍对象下的authors字段获取其所关联的所有作者对象
book_obj1.authors.all() # 返回一个存有多个作者的queryset
多对多关系其它常用API:
book_obj.authors.remove() # 将某个特定的对象从被关联对象集合中去除。 ====== book_obj.authors.remove(*[])
book_obj.authors.clear() #清空被关联对象集合
book_obj.authors.set() #先清空再设置
3.2 删除、修改记录
# 1、book_obj.authors.remove() :将某个特定的对象从被关联对象集合中去除
# 从菊花宝典的作者集合中去掉作者rose
rose = Author.objects.get(name='rose')
book_obj2 = Book.objects.get(title='菊花宝典')
book_obj2.authors.remove(rose)
# 2、book_obj.authors.clear():清空被关联对象集合
# 清空菊花宝典所关联的所有作者
book_obj2 = Book.objects.get(title='菊花宝典')
book_obj2.authors.clear()
# 3、book_obj.authors.set():先清空再重新设置
# 玉男心经的作者原来为kevin,要求设置为egon、rose
egon=Author.objects.get(name='egon')
rose=Author.objects.get(name='rose')
book_obj5 = Book.objects.get(title='玉男心经')
book_obj5.authors.set([egon,rose]) # 多个作者对象放到列表里
四 查询记录
数据库操作最常用的还是查询操作,在介绍ORM下多表关联查询时,需要事先记住关于ORM模型的一个非常重要的概念:在使用模型类进行多表关联查询时,如果确定两张表存在关联关系,那么在选取一个表作为起始(为了后续描述方便,我们将其简称为"基表")后,可以跨表引用来自另外一张中的字段值,这存在正向与反向之分
如果关联字段存在于基表中,称之为正向查询,否则,称之为反向查询
例如表模Book与Publish,关联字段存在于Book中
# 当以Book为基表时,称之为正向查询
Book(基表)-------正向---------->Publish
# 当以Publish为基表时,称之为反向查询
Book<-------反向----------Publish(基表)
使用原生sql进行多表关联查询时无非两种方式:子查询、join连表查询,ORM里同样有两种查询方式(严格依赖正向、反向的概念)
4.1 基于对象的跨表查询
1、跨两张表查询
1.1、一对一查询(模型类Author与AuthorDetail)
正向查询,按关联字段:author_detail
# 需求:查询作者egon的手机号
# 1、先取出作者对象
egon=Author.objects.filter(name='egon').first()
# 2、正向查询:根据作者对象下的关联字段author_detail取到作者详情
print(egon.author_detail.tel) # 输出:18611312331
反向查询,按模型名(小写):author
# 需求:查询手机号为'18611312331'的作者名
# 1、先取出作者的详情对象
tel=AuthorDetail.objects.filter(tel='18611312331').first()
# 2、反向查询:根据小写的模型名author取到作者对象
print(tel.author.name) # 输出:egon
1.2、一对多查询(模型类Book与Publish)
正向查询,按关联字段:publish
# 需求:查询葵花宝典的出版社名字
# 1、先取书籍对象
book_obj=Book.objects.filter(title='葵花宝典').first()
# 2、正向查询:根据书籍对象下的关联字段publish取到出版社
print(book_obj.publish.name) # 输出:北京出版社
反向查询,按模型名(小写)_set:book_set
# 需求:查询北京出版社都出版的所有书籍名字
# 1、先取出出版社对象
publish_obj=Publish.objects.filter(name='北京出版社').first()
# 2、反向查询:根据book_set取到所有的书籍
book_objs=publish_obj.book_set.all()
print([book_obj.title for book_obj in book_objs]) # 输出:['葵花宝典', '菊花宝典', '桃花宝典']
1.3、多对多查询(模型类Book与Author)
正向查询,按关联字段,如authors
# 需求:查询葵花宝典的所有作者
# 1、先取出书籍对象
book_obj=Book.objects.filter(title='葵花宝典').first()
# 2、正向查询:根据书籍对象下的关联字段authors取到所有作者
author_objs=book_obj.authors.all()
print([obj.name for obj in author_objs]) # 输出:['egon', 'kevin']
反向查询,按模型名(小写)_set:如author_set
# 需求:查询作者rose出版的所有书籍
# 1、先取出作者对象
egon=Author.objects.filter(name='rose').first()
# 2、反向查询:根据book_set取到作者对象
book_objs=egon.book_set.all()
print([book_obj.title for book_obj in book_objs]) # 输出:['玉女心经', '九阴真经', '玉男心经']
注意:
你可以通过在 ForeignKey() 和ManyToManyField的定义中设置 related_name 的值来覆写 FOO_set 的名称。例如,如果 Article model 中做一下更改:
publish = ForeignKey(Book, related_name='bookList')
那么接下来就会如我们看到这般:
# 查询 人民出版社出版过的所有书籍
publish=Publish.objects.get(name="人民出版社")
book_list=publish.bookList.all() # 与人民出版社关联的所有书籍对象集合
2、连续跨>2张表查询
连续跨>2张表的操作的套路与上面的案例都是一样的
# 需求:查询葵花宝典的作者们的手机号
book_obj=Book.objects.filter(title='葵花宝典').first()
author_objs=book_obj.authors.all()
print([author_obj.author_detail.tel for author_obj in author_objs])
# 输出:['18611312331', '15033413881']
4.2 基于双下划线的跨表查询
Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系。要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的model 为止。
'''
正向查询按字段,反向查询按表名小写用来告诉ORM引擎join哪张表
'''
1、跨两张表查询
1.1、一对一查询(模型类Author与AuthorDetail)
正向查询,按关联字段+双下划线:author_detail__
# 需求:查询作者egon的手机号
# 注意values()中的参数是:关联字段名__要取的那张被关联表中的字段
res = Author.objects.filter(name='egon').values('author_detail__tel').first()
print(res['author_detail__tel']) # {'author_detail__tel': '18611312331'}
# 注意:基于双下划线的跨表查询会被django的orm识别为join操作,所以上述代码相当于如下sql,后续案例均是相同原理,我们不再累述
select app01_authordetail.tel from app01_author inner join app01_authordetail on app01_author.author_detail_id = app01_authordetail.nid where app01_author.name = 'egon';
反向查询,按模型名(小写)+双下划线:author__
# 需求:查询手机号为'18611312331'的作者名
# 注意values()中的参数是:小写的模型名__要取的那张被关联表中的字段
res=AuthorDetail.objects.filter(tel='18611312331').values('author__name').first()
print(res) # {'author__name': 'egon'}
补充:基表决定了正向还是反向
# 1、针对上例中正向查询的需求:查询作者egon的手机号,如果我们选取的基表是AuthorDetail,那么就成了反向查询,应该用反向查询的语法
res = AuthorDetail.objects.filter(author__name='egon').values('tel').first()
print(res) # {'tel': '18611312331'}
# 2、针对上例中反向查询的需求:查询手机号为'18611312331'的作者名,如果我们选取的基表是Author,那么就成了正向查询,应该用正向查询的语法
res=Author.objects.filter(author_detail__tel='18611312331').values('name').first()
print(res) # {'name': 'egon'}
1.2、多对一查询(模型类Book与Publish)
正向查询,按关联字段+双下划线:publish__
# 需求:查询葵花宝典的出版社名字
# 注意values()中的参数是:关联字段名__要取的那张被关联表中的字段
res=Book.objects.filter(title='葵花宝典').values('publish__name').first()
print(res['publish__name']) # {'publish__name': '北京出版社'}
反向查询,按模型名(小写)+双下划线:book__
# 需求:查询北京出版社都出版的所有书籍名字
# 注意values()中的参数是:小写的模型名__要取的那张被关联表中的字段
res = Publish.objects.filter(name='北京出版社').values('book__title')
print(res) # <QuerySet [{'book__title': '葵花宝典'}, {'book__title': '菊花宝典'}, {'book__title': '桃花宝典'}]>
补充:基表决定了正向还是反向
# 1、针对上例中正向查询的需求:查询葵花宝典的出版社名字,如果我们选取的基表是Publish,那么就成了反向查询,应该用反向查询的语法
res = Publish.objects.filter(book__title='葵花宝典').values('name').first()
print(res) # {'name': '北京出版社'}
# 2、针对上例中反向查询的需求:查询北京出版社都出版的所有书籍名字,如果我们选取的基表是Book,那么就成了正向查询,应该用正向查询的语法
res=Book.objects.filter(publish__name='北京出版社').values('title')
print(res) # <QuerySet [{'title': '葵花宝典'}, {'title': '菊花宝典'}, {'title': '桃花宝典'}]>
1.3、多对多查询(模型类Book与Author)
正向查询,按关联字段+双下划线:authors__
# 需求:查询葵花宝典的所有作者
# 注意values()中的参数是:关联字段名__要取的那张被关联表中的字段
res=Book.objects.filter(title='葵花宝典').values('authors__name')
print(res) # <QuerySet [{'authors__name': 'egon'}, {'authors__name': 'kevin'}]>
反向查询,按模型名(小写)+双下划线:如book__
# 需求:查询作者rose出版的所有书籍
# 注意values()中的参数是:小写的模型名__要取的那张被关联表中的字段
res = Author.objects.filter(name='rose').values('book__title')
print(res) # <QuerySet [{'book__title': '玉女心经'}, {'book__title': '九阴真经'}, {'book__title': '玉男心经'}]>
补充:基表决定了正向还是反向
# 1、针对上例中正向查询的需求:查询葵花宝典的所有作者,如果我们选取的基表是authors,那么就成了反向查询,应该用反向查询的语法
res=Author.objects.filter(book__title='葵花宝典').values('name')
print(res) # <QuerySet [{'name': 'egon'}, {'name': 'kevin'}]>
# 2、针对上例中反向查询的需求:查询作者rose出版的所有书籍,如果我们选取的基表是Book,那么就成了正向查询,应该用正向查询的语法
res=Book.objects.filter(authors__name='rose').values('title')
print(res) # <QuerySet [{'title': '玉女心经'}, {'title': '九阴真经'}, {'title': '玉男心经'}]>
2、连续跨>2张表查询
连续跨>2张表的操作的套路与上面的案例都是一样的,可以连续接n个双下划线,只需要在每次连双下划线时,确定是正向还是反向即可
# 需求1:查询北京出版社出版过的所有书籍的名字以及作者的姓名、手机号
# 方式一:基表为Publish
res=Publish.objects.filter(name='北京出版社').values_list('book__title','book__authors__name','book__authors__author_detail__tel')
# 方式二:基表为Book
res=Book.objects.filter(publish__name='北京出版社').values_list('title','authors__name','authors__author_detail__tel')
# 循环打印结果均为
for obj in res:
print(obj)
'''
输出:
('葵花宝典', 'egon', '18611312331')
('菊花宝典', 'egon', '18611312331')
('桃花宝典', 'egon', '18611312331')
('葵花宝典', 'kevin', '15033413881')
('菊花宝典', 'kevin', '15033413881')
('桃花宝典', 'kevin', '15033413881')
('菊花宝典', 'rose', '13011453220')
'''
# 需求2:查询手机号以186开头的作者出版过的所有书籍名称以及出版社名称
# 方式一:基表为AuthorDetail
res=AuthorDetail.objects.filter(tel__startswith='186').values_list('author__book__title','author__book__publish__name')
# 方式二:基表为Book
res=Book.objects.filter(authors__author_detail__tel__startswith='186').values_list('title','publish__name')
# 方式三:基表为Publish
res=Publish.objects.filter(book__authors__author_detail__tel__startswith='186').values_list('book__title','name')
# 循环打印结果均为
for obj in res:
print(obj)
'''
输出:
('葵花宝典', '北京出版社')
('菊花宝典', '北京出版社')
('桃花宝典', '北京出版社')
('九阴真经', '大连出版社')
'''
4.3 related_name
publish = ForeignKey(Blog, related_name='bookList')
# 练习: 查询人民出版社出版过的所有书籍的名字与价格(一对多)
# 反向查询 不再按表名:book,而是related_name:bookList
queryResult=Publish.objects
.filter(name="人民出版社")
.values_list("bookList__title","bookList__price")
反向查询时,如果定义了related_name ,则用related_name替换表名,例如:
五、 F与Q查询
F查询
在上面所有的例子中,我们在进行条件过滤时,都只是用某个字段与某个具体的值做比较。如果我们要对两个字段的值做比较,那该怎么做呢?
Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较两个不同字段的值,如下
# 一张书籍表中包含字段:评论数commentNum、收藏数keepNum,要求查询:评论数大于收藏数的书籍
from django.db.models import F
Book.objects.filter(commnetNum__lt=F('keepNum'))
Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作
# 查询评论数大于收藏数2倍的书籍
from django.db.models import F
Book.objects.filter(commnetNum__lt=F('keepNum')*2)
修改操作也可以使用F函数,比如将每一本书的价格提高30元:
Book.objects.all().update(price=F("price")+30)
Q查询
filter()
等方法中逗号分隔开的多个关键字参数都是逻辑与(AND) 的关系。 如果我们需要使用逻辑或(OR)来连接多个条件,就用到了Django的Q对象
可以将条件传给类Q来实例化出一个对象,Q的对象可以使用&
和|
操作符组合起来,&等同于and,|等同于or
from django.db.models import Q
Employee.objects.filter(Q(id__gt=5) | Q(name="Egon"))
# 等同于sql:select * from app01_employee where id < 5 or name = 'Egon';
Q
对象可以使用~
操作符取反,相当于NOT
from django.db.models import Q
Employee.objects.filter(~Q(id__gt=5) | Q(name="Egon"))
# 等同于sql:select * from app01_employee where not (id < 5) or name = 'Egon';
当我们的过滤条件中既有or又有and,则需要混用Q对象与关键字参数,但Q
对象必须位于所有关键字参数的前面
from django.db.models import Q
Employee.objects.filter(Q(id__gt=5) | Q(name="Egon"),salary__lt=100)
# 等同于sql:select * from app01_employee where (id < 5 or name = 'Egon') and salary < 100;
六、聚合查询与分组查询
6.1 聚合查询
聚合查询aggregate()是把所有查询出的记录对象整体当做一个组,我们可以搭配聚合函数来对整体进行一个聚合操作
from django.db.models import Avg, Max, Sum, Min, Max, Count # 导入聚合函数
# 1. 调用objects下的aggregate()方法,会把表中所有记录对象整体当做一组进行聚合
res1=Employee.objects.aggregate(Avg("salary")) # select avg(salary) as salary__avg from app01_employee;
print(res1) # 输出:{'salary__avg': 70.73}
# 2、aggregate()会把QuerySet对象中包含的所有记录对象当成一组进行聚合
res2=Employee.objects.all().aggregate(Avg("salary")) # select avg(salary) as salary__avg from app01_employee;
print(res2) # 输出:{'salary__avg': 70.73}
res3=Employee.objects.filter(id__gt=3).aggregate(Avg("salary")) # select avg(salary) as salary__avg from app01_employee where id > 3;
print(res3) # 输出:{'salary__avg': 71.0}
aggregate()的返回值为字典类型,字典的key是由”聚合字段的名称___聚合函数的名称”合成的,例如
Avg("salary") 合成的名字为 'salary__avg'
若我们想定制字典的key名,我们可以指定关键参数,如下
res1=Employee.objects.all().aggregate(avg_sal=Avg('salary')) # select avg(salary) as avg_sal from app01_employee;
print(res1) # 输出:{'avg_sal': 70.73} # 关键字参数名就会被当做字典的key
如果我们想得到多个聚合结果,那就需要为aggregate传入多个参数
res1=Employee.objects.all().aggregate(nums=Count('id'),avg_sal=Avg('salary'),max_sal=Max('salary'))
# 相当于SQL:select count(id) as nums,avg(salary) as avg_sal,max(salary) as max_sal from app01_employee;
print(res1) # 输出:{'nums': 10, 'avg_sal': 70.73, 'max_sal': Decimal('200.3')}
6.2 分组查询
分组查询annotate()相当于sql语句中的group by,是在分组后,对每个组进行单独的聚合,需要强调的是,在进行单表查询时,annotate()必须搭配values()使用:values("分组字段").annotate(聚合函数),如下
# 表中记录
mysql> select * from app01_employee;
+----+-------+--------+------------+------------+--------+
| id | name | gender | birth | department | salary |
+----+-------+--------+------------+------------+--------+
| 1 | Egon | 0 | 1997-01-27 | 财务部 | 100.1 |
| 2 | Kevin | 1 | 1998-02-27 | 技术部 | 10.1 |
| 3 | Lili | 0 | 1990-02-27 | 运营部 | 20.1 |
| 4 | Tom | 1 | 1991-02-27 | 运营部 | 30.1 |
| 5 | Jack | 1 | 1992-02-27 | 技术部 | 11.2 |
| 6 | Robin | 1 | 1988-02-27 | 技术部 | 200.3 |
| 7 | Rose | 0 | 1989-02-27 | 财务部 | 35.1 |
+----+-------+--------+------------+------------+--------+
# 查询每个部门下的员工数
res=Employee.objects.values('department').annotate(num=Count('id'))
# 相当于sql:
# select department,count(id) as num from app01_employee group by department;
print(res)
# 输出:<QuerySet [{'department': '财务部', 'num': 2}, {'department': '技术部', 'num': 3}, {'department': '运营部', 'num': 2}]>
跟在annotate前的values方法,是用来指定分组字段,即group by后的字段,而跟在annotate后的values方法,则是用来指定分组后要查询的字段,即select 后跟的字段
res=Employee.objects.values('department').annotate(num=Count('id')).values('num')
# 相当于sql:
# select count(id) as num from app01_employee group by department;
print(res)
# 输出:<QuerySet [{'num': 2}, {'num': 3}, {'num': 2}]>
跟在annotate前的filter方法表示where条件,跟在annotate后的filter方法表示having条件,如下
# 查询男员工数超过2人的部门名
res=Employee.objects.filter(gender=1).values('department').annotate(male_count=Count("id")).filter(male_count__gt=2).values('department')
print(res) # 输出:<QuerySet [{'department': '技术部'}]>
# 解析:
# 1、跟在annotate前的filter(gender=1) 相当于 where gender = 1,先过滤出所有男员工信息
# 2、values('department').annotate(male_count=Count("id")) 相当于group by department,对过滤出的男员工按照部门分组,然后聚合出每个部门内的男员工数赋值给字段male_count
# 3、跟在annotate后的filter(male_count__gt=2) 相当于 having male_count > 2,会过滤出男员工数超过2人的部门
# 4、最后的values('department')代表从最终的结果中只取部门名
总结:
1、values()在annotate()前表示group by的字段,在后表示取值
1、filter()在annotate()前表示where条件,在后表示having
需要注意的是,如果我们在annotate前没有指定values(),那默认用表中的id字段作为分组依据,而id各不相同,如此分组是没有意义的,如下
res=Employee.objects.annotate(Count('name')) # 每条记录都是一个分组
res=Employee.objects.all().annotate(Count('name')) # 同上
annotate()为调用的QuerySet
中每一个对象都生成一个独立的统计值(统计方法用聚合函数)。
总结 :
跨表分组查询本质就是将关联表join成一张表,再按单表的思路进行分组查询。
七、进阶练习(连续跨表)
练习:统计每一本书作者个数
from django.db.models import Avg, Max, Sum, Min, Max, Count
book_list = models.Book.objects.all().annotate(author_num=Count("authors"))
for book in book_list:
print(book.name)
print(book.author_num)
book_list = models.Book.objects.all().annotate(author_num=Count("authors")).values('name','author_num')
print(book_list)
练习:统计每一个出版社的最便宜的书
publishList=Publish.objects.annotate(MinPrice=Min("book__price"))
for publish_obj in publishList:
print(publish_obj.name,publish_obj.MinPrice)
annotate的返回值是querySet,如果不想遍历对象,可以用上valuelist:
queryResult= Publish.objects.annotate(MinPrice=Min("book__price")).values_list("name","MinPrice")
print(queryResult)
练习:统计每一本以py开头的书籍的作者个数:
queryResult=Book.objects.filter(title__startswith="Py").annotate(num_authors=Count('authors'))
练习:统计不止一个作者的图书:(作者数量大于一)
ret=models.Book.objects.annotate(author_num=Count("authors")).filter(author_num__gt=1).values('name','author_num')
print(ret)
练习:根据一本图书作者数量的多少对查询集 QuerySet
进行排序:
Book.objects.annotate(num_authors=Count('authors')).order_by('num_authors')
练习:查询各个作者出的书的总价格:
ret=models.Author.objects.annotate(sum_price=Sum("book__price")).values("name", "sum_price")
print(ret)
练习:查询每个出版社的名称和书籍个数
ret=models.Publish.objects.all().annotate(c=Count('book__name')).values('name','c')
print(ret)
单表下的分组查询
'''
查询每一个部门名称以及对应的员工数
emp:
id name age salary dep
1 alex 12 2000 销售部
2 egon 22 3000 人事部
3 wen 22 5000 人事部
'''
# select count(id) from emp group by dep
# 示例一:查询每一个部门的名称,以及平均薪水
# select dep,Avg(salary) from app01_emp group by dep
from django.db.models import Avg, Count, Max, Min
ret=Emp.objects.values('dep').annotate(Avg('salary'))
# 重新命名
ret=Emp.objects.values('dep').annotate(avg_salary=Avg('salary'))
print(ret)
# ---*******单表分组查询ORM总结:表名.objects.values('group by 的字段').annotate(聚合函数('统计的字段'))
# 示例2 查询每个省份对应的员工数
ret=Emp.objects.values('province').annotate(Count('id'))
ret=Emp.objects.values('province').annotate(c=Count('id'))
print(ret)
# 补充知识点:
ret=Emp.objects.all()
# select * from emp
ret=Emp.objects.values('name')
# select name from emp
# ****单表下,按照id进行分组是没有任何意义的
ret=Emp.objects.all().annotate(Avg('salary'))
print(ret)
# ******多表分组查询
# 查询每一个出版社出版的书籍个数
ret=Book.objects.values('publish_id').annotate(Count('nid'))
print(ret)
# 查询每个出版社的名称以及出版社书的个数(先join在跨表分组)
# 正向
ret=Publish.objects.values('name').annotate(Count('book__name'))
ret=Publish.objects.values('nid').annotate(c=Count('book__name')).values('name','c')
print(ret)
# 反向
ret=Book.objects.values('publish__name').annotate(Count('name'))
ret=Book.objects.values('publish__name').annotate(c=Count('name')).values('publish__name','c')
print(ret)
# 查询每个作者的名字,以及出版过书籍的最高价格
ret=Author.objects.values('pk').annotate(c=Max('book__price')).values('name','c')
print(ret)
# 跨表查询的模型:每一个后表模型.objects.value('pk').annotate(聚合函数('关联表__统计字段')).values()
# 查询每一个书籍的名称,以及对应的作者个数
ret=Book.objects.values('pk').annotate(c=Count('authors__name')).values('name','c')
print(ret)
# 统计不止一个作者的图书
ret=Book.objects.values('pk').annotate(c=Count('authors__name')).filter(c__gt=1).values('name','c')
print(ret)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!