tensorboard 可视化
#coding = utf8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('../MNIST_data', one_hot=True) batch_size = 100 n_batch = mnist.train.num_examples // batch_size def variable_summaries(var): with tf.name_scope('summary'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) #namescope with tf.name_scope('input'): x = tf.placeholder(tf.float32, [None, 784], name='x-input') y = tf.placeholder(tf.float32, [None, 10], name='y-input') with tf.name_scope('layer'): with tf.name_scope('weigh'): W = tf.Variable(tf.zeros([784, 10]), name = 'W') variable_summaries(W) with tf.name_scope('biases'): b = tf.Variable(tf.zeros([10]), name = 'b') variable_summaries(b) with tf.name_scope('wx_plus_b'): wx_plus_b = tf.matmul(x, W) + b with tf.name_scope('softmax'): prediction = tf.nn.softmax(wx_plus_b) with tf.name_scope('loss'): #loss = tf.reduce_mean(tf.square(y - prediction)) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction)) tf.summary.scalar('loss', loss) with tf.name_scope('train'): train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) init = tf.global_variables_initializer() with tf.name_scope('accuracy'): with tf.name_scope('correct_prediction'): correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) with tf.name_scope('accuracy'): accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) merged = tf.summary.merge_all() with tf.Session() as sess: sess.run(init) writer = tf.summary.FileWriter('logs/', sess.graph) for epoch in range(25): for batch in range(n_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) summary, _ = sess.run([merged, train_step], feed_dict={x:batch_xs, y:batch_ys}) writer.add_summary(summary, epoch) acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels}) print 'Iter' + str(epoch) + ', Testing Accuracy' + str(acc)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)