标签传播算法

参考:http://blog.csdn.net/zouxy09/article/details/49105265

因为标注成本比较高,当你的训练数据集只有一部分数据是有标注的情况下,使用监督学习你只能扔掉那些没有标注的X。而实际上,有标注的样本和无标注的样本之间是有关系的,这种关系信息也可以用来帮助学习。这就是半监督学习标签传播(Label Propagation)算法的思路。


它的基本逻辑是借助于近朱者赤的思路,也就是KNN的思路,如果A和B在X空间上很接近,那么A的Y标签就可以传给B。进一步迭代下去,如果C和B也很接近,C的标签也应该和B一样。所以基本计算逻辑就是两步,第一步是计算样本间的距离,构建转移矩阵,第二步是将转移矩阵和Y矩阵相乘,Y里面包括了已标注和未标注的两部分,通过相乘可以将已标注的Y转播给未标注的Y。

posted on   TMatrix52  阅读(250)  评论(0编辑  收藏  举报

编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示