贝叶斯网络 学习笔记

一、概述

贝叶斯网是概率论和图论相结合的产物,可以从概率论的角度讨论变量间的依赖与独立,也可以从图论的角度讨论节点间的连通与分隔,两者有深刻的联系。

1.通过图论准则可以判别变量间条件独立关系。

2.X 与 Y 不直接相连,通过其他变量才能在两者间传递信息;如果 X 和 Y 之间的所有信息通道都被阻塞,那么信息就无法再它们之间传递。 

不确定性推理与联合概率分布

 

 

 

、贝叶斯网络理解

 联合概率分布的分解降低了概率模型的复杂度,贝叶斯网的引入虽然没有进一步降低复杂度,但它为概率推理提供了很大的方便。主要是因为,(1)、贝叶斯网是严格的数学语言,适合计算机处理;(2)、直观易懂,方便建立数学模型。

 

、贝叶斯网络推理 (Inference)

贝叶斯网络可以利用变量间的条件独立对联合分布进行分解,降低参数个数,推理 (inference) 是通过计算来回答查询的过程 

贝叶斯网中的推理问题有三大类: 

1. 后验概率问题:P(Q | E = e)

 

2. 最大后验假设问题(Maximum A Posteriori hypothesis, MAP):

 

3. 最大可能解释问题(Moist Probable Explanation, MPE) 

 



 

 

posted on   TMatrix52  阅读(223)  评论(0编辑  收藏  举报

编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示