xgboost 简单测试

复制代码


#
coding=utf8 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction import DictVectorizer from xgboost import XGBClassifier titanic = pd.read_csv('./DataSets/Titanic/train.csv') X = titanic[['Pclass', 'Age', 'Sex']] y = titanic['Survived']
X[
'Age'].fillna(X['Age'].mean(), inplace=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33) vec = DictVectorizer(separator=False) X_train = vec.fit_transform(X_train.to_dict(orient='record')) #print X_train.to_dict(orient='record') X_test = vec.transform(X_test.to_dict(orient='record')) xgbc = XGBClassifier() xgbc.fit(X_train, y_train) print 'The accuracy of eXtreme Gradient Boosting Classifier on testing set:', xgbc.score(X_test, y_test)
复制代码

 

复制代码
#coding=utf8

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
titanic = pd.read_csv('./DataSets/Titanic/train.csv')
X = titanic[['Pclass', 'Age', 'Sex']]
y = titanic['Survived']

X['Age'].fillna(X['Age'].mean(), inplace=True)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33)
vec = DictVectorizer(separator=False)
X_train = vec.fit_transform(X_train.to_dict(orient='record'))
#print X_train.to_dict(orient='record')
X_test = vec.transform(X_test.to_dict(orient='record'))
xgbc = XGBClassifier()

params = {'max_depth':range(2, 7), 'n_estimators':range(100, 1100, 200), 'learning_rate':[0.05, 0.1, 0.25, 0.5, 1.0]}
gs = GridSearchCV(xgbc, params, n_jobs=-1, cv=5, verbose=1)
gs.fit(X_train, y_train)
#print 'The accuracy of eXtreme Gradient Boosting Classifier on testing set:', gs.score(X_test, y_test)

print gs.best_score_
print gs.best_params_
复制代码

 

posted on   TMatrix52  阅读(438)  评论(0编辑  收藏  举报

编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示