xgboost 简单测试
#coding=utf8 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction import DictVectorizer from xgboost import XGBClassifier titanic = pd.read_csv('./DataSets/Titanic/train.csv') X = titanic[['Pclass', 'Age', 'Sex']] y = titanic['Survived']
X['Age'].fillna(X['Age'].mean(), inplace=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33) vec = DictVectorizer(separator=False) X_train = vec.fit_transform(X_train.to_dict(orient='record')) #print X_train.to_dict(orient='record') X_test = vec.transform(X_test.to_dict(orient='record')) xgbc = XGBClassifier() xgbc.fit(X_train, y_train) print 'The accuracy of eXtreme Gradient Boosting Classifier on testing set:', xgbc.score(X_test, y_test)
#coding=utf8 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction import DictVectorizer from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV titanic = pd.read_csv('./DataSets/Titanic/train.csv') X = titanic[['Pclass', 'Age', 'Sex']] y = titanic['Survived'] X['Age'].fillna(X['Age'].mean(), inplace=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=33) vec = DictVectorizer(separator=False) X_train = vec.fit_transform(X_train.to_dict(orient='record')) #print X_train.to_dict(orient='record') X_test = vec.transform(X_test.to_dict(orient='record')) xgbc = XGBClassifier() params = {'max_depth':range(2, 7), 'n_estimators':range(100, 1100, 200), 'learning_rate':[0.05, 0.1, 0.25, 0.5, 1.0]} gs = GridSearchCV(xgbc, params, n_jobs=-1, cv=5, verbose=1) gs.fit(X_train, y_train) #print 'The accuracy of eXtreme Gradient Boosting Classifier on testing set:', gs.score(X_test, y_test) print gs.best_score_ print gs.best_params_
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)