Luogu P3243 菜肴制作 题解报告

题目传送门

【题目大意】

有$n$道菜和$m$个限制条件,对于第$i$个限制条件,编号为$x_i$的菜必须在编号为$y_i$的菜前面制作。求在保证满足所有限制条件的情况下,使得编号小的菜在尽量前面制作的排列方式。

【思路分析】

据说这题是拓扑排序常见套路?

好吧我来通俗一点讲一下

首先要意识到这题不是要字典序最小,而是要编号小的尽量在前面,那么我们反过来想就是编号大的要尽量在后面,把前面的位置留给编号小的,这是一个很显然的贪心策略

然后我们就考虑要倒序做了,那么如何满足限制呢?

我们可以把每个限制的$x,y$之间连一条边$y\to x$。因为要保证$y$在$x$的后面,那么倒序就相当于要保证$y$在$x$的前面,即先放了$y$之后再考虑放$x$。我们记录一个限制数目$d$,对于第$i$条限制$(x_i,y_i)$,我们在连完边之后,进行处理$d[x_i]++$,也就是说要在$d$的数目为0时才没有了限制,才能考虑放这个点。

为了完成编号大的要尽量在后面的要求,我们用一个大根堆来实现,如果当前这个点的$d$值为0,就插入大根堆。然后每次取出堆顶的元素记录答案,再沿着从这个点连出去的边,把每个连着的点$d$值减1,因为此时已经满足了限制。如果此时有$d$值为0的点,那么就再次插入大根堆。最后比较答案记录的个数和$n$的大小,若$n$大一些,则说明有些限制不可能满足,此时答案不存在;否则倒序输出记录的答案即为所求。

【代码实现】

 1 #include<cstdio>
 2 #include<iostream>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 #include<queue>
 7 #define g() getchar()
 8 #define rg register
 9 #define go(i,a,b) for(rg int i=a;i<=b;i++)
10 #define back(i,a,b) for(rg int i=a;i>=b;i--)
11 #define db double
12 #define ll long long
13 #define il inline
14 #define pf printf
15 #define mem(a,b) memset(a,b,sizeof(a))
16 #define E(i,x) for(rg int i=head[x];i;i=e[i].next)
17 #define to(i) e[i].to
18 using namespace std;
19 int fr(){
20     int w=0,q=1;
21     char ch=g();
22     while(ch<'0'||ch>'9'){
23         if(ch=='-') q=-1;
24         ch=g();
25     }
26     while(ch>='0'&&ch<='9') w=(w<<1)+(w<<3)+ch-'0',ch=g();
27     return w*q;
28 }
29 const int N=100002;
30 int T,n,m,ed,head[N],d[N],ans[N];
31 priority_queue<int> q;//用于把编号大的点排到前面,因为整个过程是倒序
32 struct edge{
33     int to,next;
34 }e[N];
35 il void build(rg int x,rg int y){
36     e[++ed].next=head[x];
37     e[ed].to=y;head[x]=ed;
38     d[y]++;//记录有几个限制
39     return;
40 }
41 il void work(){
42     go(i,1,n) if(!d[i]) q.push(i);//先放没有限制的点
43     while(!q.empty()){
44         rg int x=q.top();q.pop();//每次取出当前满足限制了的编号最大的点
45         ans[++ans[0]]=x;//记录答案
46         E(i,x){
47             d[to(i)]--;
48             if(!d[to(i)]) q.push(to(i));
49         }
50     }
51     if(ans[0]<n) {pf("Impossible!\n");return;}
52     //如果最后的数目不对,就相当于有限制条件无法满足
53     back(i,ans[0],1) pf("%d ",ans[i]);puts("");
54     //倒序输出就是编号小的在前面了
55     return;
56 }
57 int main(){
58     //freopen("","r",stdin);
59     //freopen("","w",stdout);
60     T=fr();
61     while(T--){
62         n=fr();m=fr();
63         ed=0;mem(head,0);mem(d,0);mem(ans,0);
64         go(i,1,m){
65             rg int x=fr(),y=fr();
66             build(y,x);//有限制的话就连边,相当于我要先放好了y再考虑放x
67         }
68         work();
69     }
70     return 0;
71 }
代码戳这里
posted @ 2019-09-20 15:18  小叽居biubiu  阅读(185)  评论(3编辑  收藏  举报