【算法•日更•第五十七期】快速傅里叶变换(FFT):从入门到放弃

▎一些用的上的东西

  小编太菜了,很多东西都不会证明(主要是三角函数还没有学啊~~~)。

  附上链接https://blog.csdn.net/enjoy_pascal/article/details/81478582

  大家可以看看这个博主的证明。

  所以小编就只提供讲解了。

▎前置知识

  离散傅里叶变换,传送门

▎FFT

  在之前,一个多项式是长这个样子的:

  

  现在我们拆一下,定义两个多项式:

  f1(x)=a0+a2x+a4x2+……+an-2xn/2-1

  f2(x)=a1+a3x+a5x2+……+an-1xn/2-1

  显然,f(x)=f1(x2)+x·f2(x2)。

  

 

  利用分治的思想,我们将ωnk和wnk+n/2分别当作x带入,易得:

  f(ωnk)=f1n/2k)+ωnkf2n/2k)

  f(wnk+n/2)=f1n/2k)-ωnkf2n/2k)

  我们会发现只要算出f1n/2k)和ωnkf2n/2k),f(ωnk)和f(wnk+n/2)就迎刃而解了。

posted @ 2019-08-29 07:36  c1714-gzr  阅读(262)  评论(0编辑  收藏  举报