异步、+回调机制、线程queue、线程Event、协程、单线程实现遇到IO切换

# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import requests
# import os
# import time
# import random
#
# def get(url):
#     print('%s GET %s' %(os.getpid(),url))
#     response=requests.get(url)
#     time.sleep(random.randint(1,3))
#
#     if response.status_code == 200:
#         return response.text
#
# def pasrse(res):
#     print('%s 解析结果为:%s' %(os.getpid(),len(res)))
#
# if __name__ == '__main__':
#     urls=[
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.python.org',
#
#     ]
#
#     pool=ProcessPoolExecutor(4)
#     objs=[]
#     for url in urls:
#         obj=pool.submit(get,url)
#         objs.append(obj)
#
#     pool.shutdown(wait=True)
#     # 问题:
#     # 1、任务的返回值不能得到及时的处理,必须等到所有任务都运行完毕才能统一进行处理
#     # 2、解析的过程是串行执行的,如果解析一次需要花费2s,解析9次则需要花费18s
#     for obj in objs:
#         res=obj.result()
#         pasrse(res)



# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import requests
# import os
# import time
# import random
#
# def get(url):
#     print('%s GET %s' %(os.getpid(),url))
#     response=requests.get(url)
#     time.sleep(random.randint(1,3))
#
#     if response.status_code == 200:
#         pasrse(response.text)
#
# def pasrse(res):
#     print('%s 解析结果为:%s' %(os.getpid(),len(res)))
#
# if __name__ == '__main__':
#     urls=[
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.python.org',
#
#     ]
#
#     pool=ProcessPoolExecutor(4)
#     for url in urls:
#         pool.submit(get,url)
#





# from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
# import requests
# import os
# import time
# import random
#
# def get(url):
#     print('%s GET %s' %(os.getpid(),url))
#     response=requests.get(url)
#     time.sleep(random.randint(1,3))
#
#     if response.status_code == 200:
#         # 干解析的活
#         return response.text
#
# def pasrse(obj):
#     res=obj.result()
#     print('%s 解析结果为:%s' %(os.getpid(),len(res)))
#
# if __name__ == '__main__':
#     urls=[
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.baidu.com',
#         'https://www.python.org',
#     ]
#
#     pool=ProcessPoolExecutor(4)
#     for url in urls:
#         obj=pool.submit(get,url)
#         obj.add_done_callback(pasrse)
#
#     # 问题:
#     # 1、任务的返回值不能得到及时的处理,必须等到所有任务都运行完毕才能统一进行处理
#     # 2、解析的过程是串行执行的,如果解析一次需要花费2s,解析9次则需要花费18s
#     print('主进程',os.getpid())



#解决问题:


from concurrent.futures import ProcessPoolExecutor,ThreadPoolExecutor
from threading import current_thread
import requests
import os
import time
import random

def get(url):
    print('%s GET %s' %(current_thread().name,url))
    response=requests.get(url)
    time.sleep(random.randint(1,3))

    if response.status_code == 200:
        # 干解析的活
        return response.text

def pasrse(obj):
    res=obj.result()
    print('%s 解析结果为:%s' %(current_thread().name,len(res)))

if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.baidu.com',
        'https://www.python.org',
    ]

    pool=ThreadPoolExecutor(4)
    for url in urls:
        obj=pool.submit(get,url)
        obj.add_done_callback(pasrse)

       print('主线程',current_thread().name)
异步+回调机制

 

线程queue:

1、队列:先进先出

# q=queue.Queue(3) #队列:先进先出
# q.put(1)
# q.put(2)
# q.put(3)
# # q.put(4)
#
# print(q.get())
# print(q.get())
# print(q.get())
队列

 

2、堆栈:后进先出

# q=queue.LifoQueue(3) #堆栈:后进先出
#
# q.put('a')
# q.put('b')
# q.put('c')
#
# print(q.get())
# print(q.get())
# print(q.get())
堆栈

 

3、优先级队列:可以以小元组的形式往队列理存值,第一个元素代表优先级,数字越小优先级别越高

q=queue.PriorityQueue(3)
q.put((10,'user1'))
q.put((-3,'user2'))
q.put((-2,'user3'))


print(q.get())
print(q.get())
print(q.get())
优先级队列

 

Event: 进程之间协同工作

# from threading import Event,current_thread,Thread
# import time
#
# event=Event()
#
# def check():
#     print('%s 正在检测服务是否正常....' %current_thread().name)
#     time.sleep(3)
#     event.set()
#
#
# def connect():
#     print('%s 等待连接...' %current_thread().name)
#     event.wait()
#     print('%s 开始连接...' % current_thread().name)
#
# if __name__ == '__main__':
#     t1=Thread(target=connect)
#     t2=Thread(target=connect)
#     t3=Thread(target=connect)
#
#     c1=Thread(target=check)
#
#     t1.start()
#     t2.start()
#     t3.start()
#     c1.start()




from threading import Event,current_thread,Thread
import time

event=Event()

def check():
    print('%s 正在检测服务是否正常....' %current_thread().name)
    time.sleep(5)
    event.set()


def connect():
    count=1
    while not event.is_set():
        if count ==  4:
            print('尝试的次数过多,请稍后重试')
            return
        print('%s 尝试第%s次连接...' %(current_thread().name,count))
        event.wait(1)
        count+=1
    print('%s 开始连接...' % current_thread().name)

if __name__ == '__main__':
    t1=Thread(target=connect)
    t2=Thread(target=connect)
    t3=Thread(target=connect)

    c1=Thread(target=check)

    t1.start()
    t2.start()
    t3.start()
    c1.start()
Event

 

 

 

协程:

1、单线程下实现并发:协程

    并发指的多个任务看起来是同时运行的

    并发实现的本质:切换+保存状态

    并发、并行、串行:

    并发:看起来是同时运行,切换+保存状态

    并行:真正意义上的同时运行,只有在多cpu的情况下才能

      实现并行,4个cpu能够并行4个任务

    串行:一个人完完整整地执行完毕才运行下一个任务

# import time
# def consumer():
#     '''任务1:接收数据,处理数据'''
#     while True:
#         x=yield
#
#
# def producer():
#     '''任务2:生产数据'''
#     g=consumer()
#     next(g)
#     for i in range(10000000):
#         g.send(i)
#
# start=time.time()
# #基于yield保存状态,实现两个任务直接来回切换,即并发的效果
# #PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
# producer() #1.0202116966247559
#
#
# stop=time.time()
# print(stop-start)




#
# import time
# def consumer(res):
#     '''任务1:接收数据,处理数据'''
#     pass
#
# def producer():
#     '''任务2:生产数据'''
#     res=[]
#     for i in range(10000000):
#         res.append(i)
#
#     consumer(res)
#     # return res
#
# start=time.time()
# #串行执行
# res=producer()
# stop=time.time()
# print(stop-start)
协程

 

单线程下实现IO切换:

# from greenlet import greenlet
# import time
#
# def eat(name):
#     print('%s eat 1' %name)
#     time.sleep(30)
#     g2.switch('alex')
#     print('%s eat 2' %name)
#     g2.switch()
# def play(name):
#     print('%s play 1' %name)
#     g1.switch()
#     print('%s play 2' %name)
#
# g1=greenlet(eat)
# g2=greenlet(play)
#
# g1.switch('egon')


# import gevent
#
# def eat(name):
#     print('%s eat 1' %name)
#     gevent.sleep(5)
#     print('%s eat 2' %name)
# def play(name):
#     print('%s play 1' %name)
#     gevent.sleep(3)
#     print('%s play 2' %name)
#
# g1=gevent.spawn(eat,'egon')
# g2=gevent.spawn(play,'alex')
#
# # gevent.sleep(100)
# # g1.join()
# # g2.join()
# gevent.joinall([g1,g2])



# from gevent import monkey;monkey.patch_all()
# import gevent
# import time
#
# def eat(name):
#     print('%s eat 1' %name)
#     time.sleep(5)
#     print('%s eat 2' %name)
# def play(name):
#     print('%s play 1' %name)
#     time.sleep(3)
#     print('%s play 2' %name)
#
# g1=gevent.spawn(eat,'egon')
# g2=gevent.spawn(play,'alex')
#
# # gevent.sleep(100)
# # g1.join()
# # g2.join()
# gevent.joinall([g1,g2])






from gevent import monkey;monkey.patch_all()
from threading import current_thread
import gevent
import time

def eat():
    print('%s eat 1' %current_thread().name)
    time.sleep(5)
    print('%s eat 2' %current_thread().name)
def play():
    print('%s play 1' %current_thread().name)
    time.sleep(3)
    print('%s play 2' %current_thread().name)

g1=gevent.spawn(eat)
g2=gevent.spawn(play)

# gevent.sleep(100)
# g1.join()
# g2.join()
print(current_thread().name)
gevent.joinall([g1,g2])
代码

 

posted @ 2018-11-13 19:54  萤huo虫  阅读(215)  评论(0编辑  收藏  举报