【AtCoder】【DP】【思维】Prefix Median(AGC012)
模的是这位神犇的代码:Atcoder AGC012F : Prefix Median
题意:
在动态中位数那道题上做了一些改动。给你一个序列a,可以将a重新任意排序,然后对于a序列构造出b序列。
假设a序列有2*n-1个元素,b序列有n个元素。
其中b[i]=Median(a[1],a[2],a[3]...a[2i-1])。求能够构造出多少个不同的b序列。
数据范围:
1<=N<=50,1<=ai<=2N-1
思路:
这道题真的是究极神题...虽然说代码实现比较简单,但是分析的过程是恶心到吐的。
首先,我们需要分析一堆性质:
首先将a序列排序,便于讨论
- \(a[i]<=b[i]<=a[2*N-i]\)
- \(当i<j时,不存在i使得:b[j]<b[i]<b[j+1]或者是b[j+1]<=b[i]<=b[j]\)
先抛开性质不谈,首先有很明显的一个性质:i从左往右走的时候,假设已经选取的元素的集合为c(c是排好了序的)。每加入两个元素,b[i]的取值的下标在c中只会向左或者是向右移动一格,或者是保持不变。(可以通过枚举法简单证得,即新加入的两个元素x,y都小于b[i-1],或者是都大于b[i+1],或者是一个大于,一个小于的情况)。
然后来看上面的性质。因为求b[i]时的序列中小于等于b[i]至少有i个元素,大于等于b[i]的至少有i个元素,所以说在a数组中的b[i]至少在a[i]~a[2N-i]之间。性质1是没有问题的;
然后是性质2。因为最开始所说的“明显的性质”,所以说b[j]与b[j+1]在已经选取的数字的序列之的位置相差不会超过1,也就是说中间不会间隔任何的数字。但同时还需要注意一点,就是这里是'<'和'>',也就是说是可以取等的,也就是位置保持不变的情况。那么性质2也有了。
接下来就是怎么实现了。
由于开头赋的题解对于代码的部分的具体细节解释的不是很详细,我这里就贸然做一些补充了(〃'▽'〃)
首先定义状态dp[i][L][R]表示现在确定的是b[i],可选元素中小于等于b[i+1]的有L个,大于b[i+1]的有R个。然后考虑转移。转移的话就是枚举b[i]选取的位置,然后删去相应的元素就可以了。然而并没有这么简单!!!具体细节将在代码中进行详细的说明。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 100
#define MO 1000000007
using namespace std;
typedef long long LL;
int a[MAXN+5],n;
LL f[MAXN+5][MAXN+5][MAXN+5];
int main()
{
scanf("%d",&n);
for(int i=1;i<=2*n-1;i++)
scanf("%d",&a[i]);
sort(a+1,a+2*n);
f[n][1][0]=1;
//初始状态中,小于等于b[n]的有1个,大于b[n]的有0个(虽然稍微有些违背定义,但是暂且先这样定义吧)
LL t;
for(int i=n-1;i>=1;i--)
{
int al=(a[i]!=a[i+1]),ar=(a[2*n-i]!=+a[2*n-i-1]);
//这里是向两边进行扩展,也就是运用性质1进行扩展
//因为相同的数进行的扩展是没有意义的,所以说需要这样进行能否进行有效的扩展的判断
for(int l=0;l<=2*n-1;l++)
for(int r=0;l+r<=2*n-1;r++)
if(f[i+1][l][r])
{
t=f[i+1][l][r];
for(int dl=1;dl<=l+al;dl++)//选择小于b[i+1]的元素
{
f[i][l+al-dl+1][r+ar+(dl>1)]+=t;
//+al是进行对于L的拓展
//-dl是删去选了的元素与b[i+1]之间的元素
//+1是因为删多了一个,那就是已经选取的b[i],所以说要加回来
//右边+(dl>1)是因为:
//当dl==1的时候,选取的就是b[i+1]这个元素,那就是什么都不会改变的
//当dl>1的时候,选取的就是<b[i+1]中的一个元素,那么b[i+1]就会成为>b[i]中的一个元素,又因为可以取整,所以说要加上去
f[i][l+al-dl+1][r+ar+(dl>1)]%=MO;
}
for(int dr=1;dr<=r+ar;dr++)//选择大于等于b[i+2]的元素
{
f[i][l+al+1][r+ar-dr]+=t;
//左边+1是因为加入b[i]这个可选元素,与上面的比较类似
//右边就是正常的转移,这还比较简单
f[i][l+al+1][r+ar-dr]%=MO;
}
}
}
LL ans=0;
for(int l=0;l<=2*n-1;l++)
for(int r=0;l+r<=2*n-1;r++)
ans=(1LL*ans+1LL*f[1][l][r])%MO;//对于每一个可能的情况都需要计算答案
printf("%lld\n",ans);
return 0;
}
以上只是个人的理解,如果出了什么偏差,还请读者自行脑补ヽ(・ω・´メ)