【文文殿下】Manache算法-学习笔记

Manache算法

  定义是一个判断回文子串的算法,我们结合例题解释:

        题目:给定一个长度为 n 的字符串 S,求其最长回文子串 一个字符串是回文的,当且仅当反转后的串与原串完全相等

   分析:对于这个题目,有三种主流思路: 

        一:Hash+二分 

            计算字符串的前缀hash值

            枚举中点,二分回文字串的长度

            时间复杂度:$O(nlogn)$

          二:回文自动机

         复杂度是线性的,但是编程复杂度极高,思维难度极高。

          三:Manache算法

       复杂度是线性的,思维难度低,编程难度低

 


 讲解Manache方法

      对于Manache算法,我们先考虑朴素做法:枚举回文串中心,然后向两边扩展,这样的复杂度是$O(N^2)$的,

      但是类比KMP算法,我们在朴素算法中,没有考虑到已经计算的部分对于之后结果的贡献,朴素方法的突破口就在这里了。

      考虑优化:由于回文串长度分奇偶,有点麻烦,所以,我们考虑在每个字符中间插入一个'#'字符,来保证字符串的奇性。特别的,在字符串前两个字符,插入\$和#,对于\$的作用是:防止数组越界,既下文代码中的whie()函数,来确保其遇到字符串开头立即停止(因为对于$字符,其为唯一的,不可能有字符与其匹配)。

      我们引入辅助数组$len[i]$ 来表示以$i$为中心,最大回文串的半径,显然的,对于每一个$len[i]$,$len[i]-1$就是原来回文串的长度,我们结合一个样例来说明:

      原字符串:$   #   A   #   B   #   A   #   A   #    B    #

      $len$数组  1   1   2    1   4    1   2     2   2    1   2    1

      原来的最长回文串是$3$ 也就是$len[4]-1$ (从0开始标号)。

      对吧?

      接下来的问题,就是如何计算$len$数组了 , 这确实是个问题,不过我们可以通过下面的办法解决:

      考虑$len[i]$ 以及当前求出的回文右边界$mx$ , $id$ 是对应的回文中心,如果$i<mx$ 则附上初值$min{mx-i,p[j]}$,其中,$j$是$i$关于$id$的对称坐标,通过中点坐标公式,我们可以得出:$j=id*2-i$ 。

      否则($i>=mx$)附上初值$len[i]=1$. 

      然后,向两边扩展就好了。可以结合下面的图像理解:

      

         带有下划线的部分,是已经计算得出的回文串。

代码实现:

 

1 void Manache() {
2     int pos=0,mx=0;
3     for(register int i=1;i<=n;++i) {
4         len[i]=i<mx?min(len[(pos<<1)-i],mx-i):1;
5         while(b[i-len[i]]==b[i+len[i]]) len[i]++;
6         if(i+len[i]>mx) mx=i+len[i],pos=i;
7     }
8 }
View Code

 

 

 

posted @ 2018-07-14 20:26  文文殿下  阅读(2041)  评论(1编辑  收藏  举报