Python数据分析与机器学习-NumPy_3

import numpy as np
a = np.arange(15).reshape(3,5)
a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
a.shape
(3, 5)
# the number of axes of the array
a.ndim
2
a.dtype.name
'int64'
# the total number of elements of the array
a.size
15
np.zeros((3,4))
array([[0., 0., 0., 0.],
       [0., 0., 0., 0.],
       [0., 0., 0., 0.]])
np.ones((2,3,4),dtype=np.int32)
array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],

       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]], dtype=int32)
# To create sequences of numbers
np.arange(10,30,5)
array([10, 15, 20, 25])
np.arange(0,2,0.3)
array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
np.arange(12).reshape(4,3)
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])
np.random((2,3))
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-15-cf9c37e80811> in <module>
----> 1 np.random((2,3))


TypeError: 'module' object is not callable
np.random.random((2,3))
array([[0.51537431, 0.73040071, 0.98759733],
       [0.55248528, 0.78998663, 0.59329055]])
from numpy import pi
np.linspace(0,2*pi,100)
array([0.        , 0.06346652, 0.12693304, 0.19039955, 0.25386607,
       0.31733259, 0.38079911, 0.44426563, 0.50773215, 0.57119866,
       0.63466518, 0.6981317 , 0.76159822, 0.82506474, 0.88853126,
       0.95199777, 1.01546429, 1.07893081, 1.14239733, 1.20586385,
       1.26933037, 1.33279688, 1.3962634 , 1.45972992, 1.52319644,
       1.58666296, 1.65012947, 1.71359599, 1.77706251, 1.84052903,
       1.90399555, 1.96746207, 2.03092858, 2.0943951 , 2.15786162,
       2.22132814, 2.28479466, 2.34826118, 2.41172769, 2.47519421,
       2.53866073, 2.60212725, 2.66559377, 2.72906028, 2.7925268 ,
       2.85599332, 2.91945984, 2.98292636, 3.04639288, 3.10985939,
       3.17332591, 3.23679243, 3.30025895, 3.36372547, 3.42719199,
       3.4906585 , 3.55412502, 3.61759154, 3.68105806, 3.74452458,
       3.8079911 , 3.87145761, 3.93492413, 3.99839065, 4.06185717,
       4.12532369, 4.1887902 , 4.25225672, 4.31572324, 4.37918976,
       4.44265628, 4.5061228 , 4.56958931, 4.63305583, 4.69652235,
       4.75998887, 4.82345539, 4.88692191, 4.95038842, 5.01385494,
       5.07732146, 5.14078798, 5.2042545 , 5.26772102, 5.33118753,
       5.39465405, 5.45812057, 5.52158709, 5.58505361, 5.64852012,
       5.71198664, 5.77545316, 5.83891968, 5.9023862 , 5.96585272,
       6.02931923, 6.09278575, 6.15625227, 6.21971879, 6.28318531])
np.sin(np.linspace(0,2*pi,100))
array([ 0.00000000e+00,  6.34239197e-02,  1.26592454e-01,  1.89251244e-01,
        2.51147987e-01,  3.12033446e-01,  3.71662456e-01,  4.29794912e-01,
        4.86196736e-01,  5.40640817e-01,  5.92907929e-01,  6.42787610e-01,
        6.90079011e-01,  7.34591709e-01,  7.76146464e-01,  8.14575952e-01,
        8.49725430e-01,  8.81453363e-01,  9.09631995e-01,  9.34147860e-01,
        9.54902241e-01,  9.71811568e-01,  9.84807753e-01,  9.93838464e-01,
        9.98867339e-01,  9.99874128e-01,  9.96854776e-01,  9.89821442e-01,
        9.78802446e-01,  9.63842159e-01,  9.45000819e-01,  9.22354294e-01,
        8.95993774e-01,  8.66025404e-01,  8.32569855e-01,  7.95761841e-01,
        7.55749574e-01,  7.12694171e-01,  6.66769001e-01,  6.18158986e-01,
        5.67059864e-01,  5.13677392e-01,  4.58226522e-01,  4.00930535e-01,
        3.42020143e-01,  2.81732557e-01,  2.20310533e-01,  1.58001396e-01,
        9.50560433e-02,  3.17279335e-02, -3.17279335e-02, -9.50560433e-02,
       -1.58001396e-01, -2.20310533e-01, -2.81732557e-01, -3.42020143e-01,
       -4.00930535e-01, -4.58226522e-01, -5.13677392e-01, -5.67059864e-01,
       -6.18158986e-01, -6.66769001e-01, -7.12694171e-01, -7.55749574e-01,
       -7.95761841e-01, -8.32569855e-01, -8.66025404e-01, -8.95993774e-01,
       -9.22354294e-01, -9.45000819e-01, -9.63842159e-01, -9.78802446e-01,
       -9.89821442e-01, -9.96854776e-01, -9.99874128e-01, -9.98867339e-01,
       -9.93838464e-01, -9.84807753e-01, -9.71811568e-01, -9.54902241e-01,
       -9.34147860e-01, -9.09631995e-01, -8.81453363e-01, -8.49725430e-01,
       -8.14575952e-01, -7.76146464e-01, -7.34591709e-01, -6.90079011e-01,
       -6.42787610e-01, -5.92907929e-01, -5.40640817e-01, -4.86196736e-01,
       -4.29794912e-01, -3.71662456e-01, -3.12033446e-01, -2.51147987e-01,
       -1.89251244e-01, -1.26592454e-01, -6.34239197e-02, -2.44929360e-16])
# The product operator * operates elementwise in NumPy arrays
a = np.array([20,30,40,50])
b = np.arange(4)
print(a)
print(b)
c = a-b
print(c)
b**2
print(b**2)
print(a<35)
[20 30 40 50]
[0 1 2 3]
[20 29 38 47]
[0 1 4 9]
[ True  True False False]
# The matrix product can be performed using the dot function or method
A = np.array([[1,1],
              [0,1]])
B = np.array([[2,0],
             [3,4]])
print(A)
print("------")
print(B)
print("------")
print(A*B)
print("------")
print(A.dot(B))
print(np.dot(A,B))
[[1 1]
 [0 1]]
------
[[2 0]
 [3 4]]
------
[[2 0]
 [0 4]]
------
[[5 4]
 [3 4]]
[[5 4]
 [3 4]]
posted @ 2019-07-03 07:50  Shinesu  阅读(150)  评论(0编辑  收藏  举报