知识点-数论进阶
知识点-数论进阶
abstract:整除分块,积性函数,线性筛,莫比乌斯反演,迪利克雷卷积,积性函数前缀和,
0.引入
(之后会发现,这道dp的转移方程和杜教筛的转移如出一辙。)
题意
有一份包含1个 bug 的n( 1≤𝑛≤1e6)行代码,运行一次到崩溃需要的时间为 r( 1≤𝑟≤1e9)。
你可以任意行添加 printf 语句来输出调试,即你知道是否在执行 printf 语句前就崩溃了。每设置一个 printf 语句需要花费 p( 1≤𝑝≤1e9)时间,但是运行不额外消耗。
• 问在最坏情况下,少需要多时间可以定位
分析
设f(n) 表示 n行代码 debug 需要的最少时间 。
最优策略是平均地往n行代码添加x行输出代码,分成⌈nx+1⌉块代码,然后再对出错的上一块代码递归debug.
得到对应的转移:
这个O(n2)的转移可以利用整除分块优化。
复杂度
递归过程中会出现⌈⌈ni⌉j⌉的式子,但我们有
所以递归中所有的取值都是⌈ni⌉的形式,而⌈ni⌉的取值只有√n种,所以我们枚举√n并记忆化搜索。时间复杂度为:
这里只展开一层就可以了,更深层的复杂度是高阶小量
小结
递归式形如
可以利用整除分块做到O(n34)。
这种形式的递归会在后面求积性函数前缀和时出现。
1.phi & mu:积性函数
定义
积性函数:若m1,m2互质
性质
-
积性函数只由其在质数幂处的取值决定。(这是积性函数可以线性筛的原因,线性筛素数模板如下)
for (int i = 2; i <= n; i++) { if (!vis[i]) prime[cnt++] = i; for (int j = 0;; j++) { int x = i * prime[j]; if (x>n) break; vis[x] = true; if (i%prime[j] == 0) break; } }
-
定义约数函数和sum-over-divisors function (迪利克雷卷积的原型)
g(n)=∑d|nf(d)若f是积性函数,则g是积性函数
-
phi可以这么定义
ϕ(d):∑d|nϕ(d)=n反过来可以用最简分数统计个数证明,即
012,112,212,312,412,512,612,712,812,912,1012,1112 01; 12; 13,23; 14,34; 16,56; 112,512,712,1112 ϕ(1)+ϕ(2)+ϕ(3)+ϕ(4)+ϕ(6)=12 -
mu可以这么定义
μ(d):∑d|nμ(d)=[n=1]反过来可以看作是容斥的系数证明,即
∑d|nμ(d)=k∑i=0C(k,i)⋅(−1)i=(1−1)k=0 -
mu的性质:
g(n)=∑d|nf(d)↔f(n)=∑d|ng(nd)μ(d)A.K.A.莫比乌斯反演
常见积性函数
- τ(n)=σ0(n)=∑d|n1 约数个数
- σ(n)=σ1(n)=∑d|nd 约数和
- σk(n)=∑d|ndk 约数和的k次幂
- e(n)=[n=1]
- I(n)=1 恒等函数
- id(n)=n
- idk(n)=nk
2.迪利克雷卷积
定义
(可以类比多项式乘法的卷积,n次项系数为h(n)=∑i+j=nf(i)⋅g(j))
性质
-
交换律、结合律,对加法满足分配律
-
若f和g为积性,则f∗g 积性
-
e(n)=[n=1]是单位元
f∗e=f=e∗f -
莫比乌斯函数与恒等函数互为逆元,即
μ∗I=e g=f∗I↔ f=g∗μ(∵ -
上面的结论就是莫比乌斯反演的卷积版,已知g时,用来求f
-
试对欧拉函数用莫比乌斯反演得到:
\because\phi*I=id\\ \therefore \phi=id*\mu展开移项得到:
\frac{\varphi(n)}{n}=\sum_{d|n}{\frac{\mu(d)}{d}} -
狄利克雷卷积的一个常用技巧是对于积性函数f与恒等函数I的卷积的处理:
n=\prod_{i=1}^{t}{p_i^{k_i}},g(n)=\sum_{d|n}{f(d)}\\ g(n)=\prod_{i=1}^{t}\sum_{j=0}^{k_i}{f(p_i^j)}
3.历年题目
7738 - Fibonacci ICPC 2016 青岛 E 结论生僻
Just a Math Problem CCPC 2016 杭州 J
Cow`s Segment CCPC 2017 harbin I
Mod, Xor and Everything CCPC 2017 杭州L 难
4.例题
例题1 积性函数&迪利克雷卷积应用
题意
定义 f(n)=选两个 $[0,n) 的整数 a,b$ ,且 ab不是n的倍数方案。
求𝑔(𝑛)=\sum_{𝑑|𝑛}𝑓(𝑑)
分析
由题意得到:
这个式子可以这么理解,首先求问题的反面,即n|ab的方案数。 当a=k\cdot j时,b必须取与 i=n/j 互质的数。a的取值有n/j种,b的取值有\phi(i)种,有
设
有
设
根据积性函数的性质,求单个P(n),Q(n),我们只需要计算 P(p^k),Q(p^k)乘起来就可以得到 P(n),Q(n)。而这是很容易计算的,因为 p^k的因数只有p^0,p^1,⋯,p^k。(这也是线性筛的原理)
剩下的是质因数分解的复杂度O(\frac{\sqrt n}{\ln \sqrt n}),证明在质数知识点里讨论过。
其实Q(n)可以进一步化简:
例题2 积性函数递推性质
题意
定义f_0(n)为满足𝑝𝑞=𝑛且gcd(𝑝,𝑞)=1的对数。
定义
q组询问f_r(n) q,r,n<1e6
分析
定义\omega(n)为n的不同质因子g个数,则f_0=2^{\omega(n)}.
注意到f_r为积性,所以f_{r+1}也为积性.
由于积性,我们只需要求f_r(p^k).
注意到\forall p,f_0(p)=2,所以\forall p,f_r(p^k)是定值如果r,k是定值。
又注意到k是O(logn)的,前缀和优化求f_{r+1}(p^k)=\sum_{i=0}^kf_r(p^i),使用O(rlogn)的时间预处理出所有可能的f_r(p^k)的询问。
剩下质因数分解的复杂度。
例题3 积性函数前缀和
题意
1 ≤ n ≤ 10^{11}
分析
如果 f(p)可以在 O(logn)的时间内求出来,求出质数项的总时间是𝑂(𝑛)的;
通常,f(pk)可以比较容易的由f(p^{k-1})等值递推出来。其他项可以直接由积性函数的性质f(x)=f(d)*f(\frac{x}{d})得到。因此,很多积性函数都可以在欧拉筛的过程中顺便递推出,很多积性函数都可以在欧拉筛的过程中顺便递推出前 𝑛项的值,时间复杂度为 𝑂(𝑛)。
此题要求低于线性时间前缀和。
解法1
公式推导:
而
令a=\sum^n_{i=1}\sum^n_{j=1} \lfloor \frac{n}{ij}\rfloor\cdot ij, f(n)=\sum_{i=1}^n \lfloor \frac{n}{i}\rfloor i则
O(\sqrt n)地枚举\lfloor \frac{n}{i}\rfloor,然后O(\sqrt{\lfloor \frac{n}{i}\rfloor}) 地计算f(\lfloor \frac{n}{i}\rfloor)时间复杂度为
O(1)读写f的技巧:用两个\sqrt n 大小的数组。
解法2
定义g(n)=f(n)-f(n-1),
求其前n^\frac{2}{3}项及其前缀和。对于\lfloor \frac{n}{i}\rfloor>n^\frac{2}{3}暴力计算f(\lfloor \frac{n}{i}\rfloor),复杂度为
例题4 莫比乌斯反演
题意
分析
将p提出来,
根据容斥
得到
定义
则
预处理f即可O(\sqrt n+\sqrt m )地回答每组询问.
若暴力求f,复杂度O(n loglogn)
观察得到递推式:
设x为n的最小质因子,若x^2|n,f(n)=\mu(n/x)否则:
用线性筛做到O(n)
例题5 杜教筛求数论函数前缀和
分析
如果能通过狄利克雷卷积构造一个更好计算前缀和的函数,且用于卷积的另一个函数也易计算,则可以简化计算过程。
具体来说,设S(n)为f(n)的前缀和.\forall数论函数 g ,设h=f*g,有
移项得
对于可以O(\sqrt n)求h前缀和,O(1)求g的情况,复杂度为O(\sum_{i=1}^\sqrt{n} \sqrt{\lfloor \frac{n}{i}\rfloor})=O(n^{\frac{3}{4}}).
如果f有较好的性质(比如积性函数),可以线性筛求其前n^\frac{2}{3}项,>n^\frac{2}{3}递归计算,复杂度为O(n^\frac{2}{3})
题意
【模板】杜教筛(Sum)
hdu 5608 function
huntian oy 杜教筛进阶
divcnt3 阁洲筛/扩展欧拉筛ees
2016年数论函数论文
Just a Math Problem CCPC 2016 杭州 J
非套路线性求和,令\omega(n)为质因数个数。
more exe:
51Nod 1244 - 莫比乌斯函数之和
51Nod 1239 - 欧拉函数之和
BZOJ 3944 - Sum
HDU 5608 - function
51Nod 1238 - 最小公倍数之和 V3
51Nod 1237 - 最大公约数之和 V3
51Nod 1227 - 平均最小公倍数
Tsinsen A1231 - Crash的数字表格
SPOJ DIVCNT2 - Counting Divisors (square)
51Nod 1222 - 最小公倍数计数(复杂度分析)
BZOJ 4176 - Lucas的数论
51Nod 1220 - 约数之和
51Nod 1584 - 加权约数和
ZOJ 3881 - From the ABC conjecture(不需要使用正文方法)
BZOJ 3512 - DZY Loves Math IV
ZOJ 5340 - The Sum of Unitary Totient(常规积性函数求和,数据组数较多,只可分段打表)
SPOJ DIVCNT3 - Counting Divisors (cube)(常规积性函数求和,注意代码长度限制,不可打表)
51Nod 1575 - Gcd and Lcm(常规积性函数求和,可分段打表)
51Nod 1847 - 奇怪的数学题(非常规积性函数求和,综合题,可分段打表)
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· PostgreSQL 和 SQL Server 在统计信息维护中的关键差异
· C++代码改造为UTF-8编码问题的总结
· DeepSeek 解答了困扰我五年的技术问题
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· 清华大学推出第四讲使用 DeepSeek + DeepResearch 让科研像聊天一样简单!
· 实操Deepseek接入个人知识库
· CSnakes vs Python.NET:高效嵌入与灵活互通的跨语言方案对比
· Plotly.NET 一个为 .NET 打造的强大开源交互式图表库