Sequence in the Pocket ZOJ - 4104 (待解决
https://vjudge.net/problem/ZOJ-4104/origin
https://vjudge.net/contest/395635#problem/E
DreamGrid has just found an integer sequence a_1, a_2, \dots, a_na1,a2,…,an in his right pocket. As DreamGrid is bored, he decides to play with the sequence. He can perform the following operation any number of times (including zero time): select an element and move it to the beginning of the sequence.
What's the minimum number of operations needed to make the sequence non-decreasing?
Input
There are multiple test cases. The first line of the input contains an integer TT, indicating the number of test cases. For each test case:
The first line contains an integer nn (1 \le n \le 10^51≤n≤105), indicating the length of the sequence.
The second line contains nn integers a_1, a_2, \dots, a_na1,a2,…,an (1 \le a_i \le 10^91≤ai≤109), indicating the given sequence.
It's guaranteed that the sum of nn of all test cases will not exceed 10^6106.
Output
For each test case output one line containing one integer, indicating the answer.
Sample Input
2 4 1 3 2 4 5 2 3 3 5 5
Sample Output
2 0
Hint
For the first sample test case, move the 3rd element to the front (so the sequence become {2, 1, 3, 4}), then move the 2nd element to the front (so the sequence become {1, 2, 3, 4}). Now the sequence is non-decreasing.
For the second sample test case, as the sequence is already sorted, no operation is needed.
附未通过代码方便日后补题:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <bitset> #include <cassert> #include <cctype> #include <cmath> #include <cstdlib> #include <ctime> #include <deque> #include <iomanip> #include <list> #include <map> #include <queue> #include <set> #include <stack> #include <vector> #include <iterator> #include <utility> #include <sstream> #include <limits> #include <numeric> #include <functional> using namespace std; #define gc getchar() #define mem(a) memset(a,0,sizeof(a)) #define debug(x) cout<<"debug:"<<#x<<" = "<<x<<endl; #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); typedef long long ll; typedef unsigned long long ull; typedef long double ld; typedef pair<int,int> pii; typedef char ch; typedef double db; const double PI=acos(-1.0); const double eps=1e-6; const int inf=0x3f3f3f3f; const int maxn=1e5+10; const int maxm=100+10; const int N=1e6+10; const int mod=1e9+7; ll a[100005] = {0}; int main() { int t = 0; cin >> t; while(t--) { int n = 0; cin >> n; int counter = 0; int flag = 0; for(int i = 0;i<n;i++) { cin >> a[i]; } if(a[1]>a[0] && a[1]>a[2]) { flag = 1; //cout <<1<< " !A\n"; } for(int i = 2;i<n-2;i++) { if(a[i]>a[i-1] && a[i]>a[i+1]) { if(flag < 2) { if(a[i] == a[i-2]) { counter -= 1; if(flag == 1)counter += 1; a[i-1] = a[i]; flag = 2; //cout <<i<< " !1\n"; continue; } if(a[i] == a[i+2]) { if(flag == 1)counter += 1; a[i+1] = a[i]; flag = 2; //cout <<i<< " !2\n"; continue; } } if(flag < 1) { if(a[i-1]<a[i-2] && a[i-1]<a[i+1] && a[i+1]<a[i+2]) { counter -= 1; a[i] = a[i-1]; flag = 1; //cout <<i<< " !3\n"; continue; } if(a[i+1]<a[i+2] && a[i+1]<a[i-1] && a[i-1]<a[i-2]) { counter -= 1; a[i] = a[i+1]; flag = 1; //cout <<i<< " !4\n"; continue; } if(a[i-1] == a[i-2] || a[i-1] == a[i+1] || a[i+1] == a[i+2]) { a[i] = a[i-1]; flag = 1; //cout <<i<< " !5\n"; continue; } } counter += 1; //cout <<i<< " !++\n"; } } if(a[n-2]>a[n-1] && a[n-2]>a[n-3] && n!=3) { counter += 1; //cout <<n-2<< " !B\n"; } cout << counter << endl; } return 0; }