FM的正交解调法

1.FM的模拟调制过程

​ FM信号是一种频率调制信号,其携带的信息保存在其信号的频率中,通过改变载波的频率来实现基带数据的传输。

其函数表达式如下:

\[s(t) = A*cos(w_c*t + K_f*\int m(\tau) d\tau) \]

其中:
\(A\):表示载波幅度。
\(m(\tau)\):表示基带信号。
\(w_c\):表示载波信号角度增量。
\(K_f`\):是调频灵敏度。

正交调制法公式如下:

\[I(t) = cos(K_f*\int m(\tau) d\tau) \\ Q(t) = sin(K_f*\int m(\tau) d\tau) \\ s(t) = A*(I(t)*cos(w_c*t) - Q(t)*sin(w_c*t)) \]

2.FM的数字正交解调

原理:

对于I路,其中\(\varphi\)表示调制载波与解调载波的相位差:

\[\begin{array}{flalign} I(n) & = LPF(s(n)*cos(w_c*n + \varphi)) \\ & = \frac{cos(K_f*\sum m(n))*cos(\varphi) + sin(K_f*\sum m(n))*sin(\varphi)}{2} \\ & = \frac{1}{2}*cos(K_f*\sum m(n) - \varphi) \end{array} \]

对于Q路:

\[\begin{array}{flalign} Q(n) & = LPF(s(n)*sin(w_c*n + \varphi)) \\ & = \frac{cos(K_f*\sum m(n))*sin(\varphi) - sin(K_f*\sum m(n))*cos(\varphi)}{2} \\ & = \frac{1}{2}*sin(K_f*\sum m(n) - \varphi) \end{array} \]

同时:

\[\begin{array}{flalign} &\ \frac{Q(n)}{I(n)} = \frac{sin(K_f*\sum m(n)- \varphi)}{cos(K_f*\sum m(n)- \varphi)} = tan(K_f*\sum m(n) - \varphi) \\ &\ SUM(n) = arctan(\frac{Q(n)}{I(n)}) = K_f*\sum m(n) - \varphi\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space (\frac{Q(n)}{I(n)}) \in (-\pi/2\space\space\space\space\pi/2) \\ &\ M(n) = SUM(n) - SUM(n-1) = K_f* m(n) \\ \end{array} \]

注:上式推算中使用了arctan函数,其中arctan的输入范围\((-\pi/2\space\space\space\space\pi/2)\)。当范围超过将计算错误。所以将使用MATLAB的atan2函数进行计算。

\[\begin{array}{equation} SUM(n) = atan2(Q(n),I(n)) = K_f*\sum m(n) - \varphi \\ M(n) = SUM(n) - SUM(n-1) = K_f* m(n) \end{array} \]

3.MATLAB仿真

仿真代码:

fs = 20000;%采样率
l = 1E3;%基带信号点数
f = 100;%基带信号
f_c = 2000;%载波信号
t = 0:1/fs:(l-1)/fs;
mt = cos(2*pi*f*t);
kf = fs * 0.4;
%% IQ信号
I = cos(kf*cumtrapz(t,mt));
Q = sin(kf*cumtrapz(t,mt));
%% 调制数据
mod_data = I.*cos(2*pi*f_c*t) - Q.*sin(2*pi*f_c*t);
%% 解调
mmm = atan2(Q,I);
demod = zeros(1,length(mmm));
for i = 2:1:length(demod)
    demod(i) = mmm(i) - mmm(i-1);
    if(demod(i) >= pi)
       demod(i) = demod(i) - pi*2; 
    elseif(demod(i) <= -pi)
       demod(i) = demod(i) + pi*2;  
    else 
        demod(i) =  demod(i); 
    end
end

%% 保存IQ数据FPGA使用仿真
fid = fopen('FM.txt','w');
for i = 1:l
    fprintf(fid,'%d %d\n',floor(I(i)* (2^13)),floor(Q(i)* (2^13)));
end
fclose(fid);

%% 绘制
figure
time = 3;
subplot(time,1,1);
plot(mt);
title('基带数据');

subplot(time,1,2);
plot(mod_data);
title('调制数据');

subplot(time,1,3);
plot(demod);
title('解调数据');

结果:

image-20241004235833600

4.FPGA解调

逻辑代码:

module fm_demod(
    input           clk             ,
    input           rst             ,
    //解调参数
    input           i_valid         ,
    input [15:0]    i_data_i        ,
    input [15:0]    i_data_q        ,
    output reg          o_rdy       ,
    output reg [15:0]   o_data    

);

    wire            fm_valid          ;
    wire [23:0]     fm_i              ;
    wire [23:0]     fm_q              ;

    wire            fm_rdy            ;
    wire [47 : 0]   m_axis_dout_tdata ;
    wire [15:0]     fm_phase          ;  
    //AM 解调

    assign fm_valid     = i_valid                        ;
    assign fm_i         = {{8{i_data_i[15]}},i_data_i}   ;
    assign fm_q         = {{8{i_data_q[15]}},i_data_q}   ;           
   
    cordic_translate cordic_translate (
        .aclk                     (clk                      ),                                        // input wire aclk
        .s_axis_cartesian_tvalid  (fm_valid                 ),  // input wire s_axis_cartesian_tvalid
        .s_axis_cartesian_tdata   ({fm_i,fm_q}              ),    // input wire [47 : 0] s_axis_cartesian_tdata
        .m_axis_dout_tvalid       (fm_rdy                   ),            // output wire m_axis_dout_tvalid
        .m_axis_dout_tdata        (m_axis_dout_tdata        )              // output wire [47 : 0] m_axis_dout_tdata
    );

    reg [15:0] fm_phase_d;

    assign fm_phase = m_axis_dout_tdata[24 +:16];
    always @(posedge clk)begin
        if(rst)begin
            o_rdy       <= 0;
            o_data      <= 0;
            o_data      <= 0;
        end
        else begin
            o_rdy       <= fm_rdy;
            fm_phase_d  <= fm_phase[15:0];
            o_data      <= fm_phase[15:0] - fm_phase_d;
        end
    end
        
endmodule

仿真代码:


module tb_fm_demod();
    reg     clk;
    reg     rst;

    initial begin
        clk <= 0;
        rst <=   1;
        #300
        rst <= 0;
    end

    always #(100/2) clk  <=~clk;
    
    reg     valid;
    reg     [15:0]  din_i;
    reg     [15:0]  din_q;
    wire          o_rdy     ;
    wire  [15:0]  o_data  ;

fm_demod   fm_demod(
    .clk         (clk),
    .rst         (rst),
    .i_valid     (valid),
    .i_data_i    (din_i),
    .i_data_q    (din_q),
    .o_rdy           (o_rdy     ),
    .o_data          (o_data    )

);

    integer file_rd;                //定义数据读指针
    integer flag;
    initial begin                        //打开读取和写入的文件,这里的路径要对    
        file_rd = $fopen("FM.txt","r");
    end  

    reg     [15:0]  cnt;


    always @(posedge clk)begin
        if(rst)begin
            din_i   <= 0;
            din_q   <= 0;
            cnt     <= 0;
            valid   <= 0;
        end
        else if(cnt <= 1000)begin
            valid   <= 1;
            flag = $fscanf(file_rd,"%d %d",din_i,din_q);
            cnt <= cnt + 1;
        end
        else begin
            $fclose(file_rd);
            $stop();
        end
    end
endmodule

仿真结果:

posted @ 2024-10-05 00:32  超级大咸鱼  阅读(52)  评论(0编辑  收藏  举报