2025.1.17(周五)
学习机器学习时,最常见的入门算法是线性回归。初学者通常会遇到模型过拟合、欠拟合等问题。为了解决这些问题,我们需要理解模型评估指标,并进行适当的正则化。
如何使用Python实现线性回归,并评估模型:
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # 加载数据集 data = pd.read_csv('house_prices.csv') X = data[['square_feet', 'num_rooms']] # 特征 y = data['price'] # 目标变量 # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建并训练线性回归模型 model = LinearRegression() model.fit(X_train, y_train) # 预测 y_pred = model.predict(X_test) # 评估模型 mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print(f'Mean Squared Error: {mse}') print(f'R2 Score: {r2}')
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!