2025.1.17(周五)

学习机器学习时,最常见的入门算法是线性回归。初学者通常会遇到模型过拟合、欠拟合等问题。为了解决这些问题,我们需要理解模型评估指标,并进行适当的正则化。

如何使用Python实现线性回归,并评估模型:

复制代码
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

# 加载数据集
data = pd.read_csv('house_prices.csv')
X = data[['square_feet', 'num_rooms']]  # 特征
y = data['price']  # 目标变量

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建并训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f'Mean Squared Error: {mse}')
print(f'R2 Score: {r2}')
复制代码

 

posted @   记得关月亮  阅读(1)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
点击右上角即可分享
微信分享提示