【bzoj4499】线性函数

题目描述

\(C\)最近在学习线性函数,线性函数可以表示为:\(f(x) = kx + b\)

现在小\(C\)面前有\(n\)个线性函数 \(f_i(x)=k_ix+b_i\),他对这\(n\)个线性函数执行\(m\)次操作。

每次可以:
1.\(M \ i \ k \ b\) 代表把第\(i\)个线性函数改为:\(f_i(x)=kx+b\)
2.\(Q \ l \ r \ x\) 返回\(f_r(f_{r-1}(...f_l(x))) \mod 10^9+7\)

题解

用线段树维护每一段区间的\(k\)\(b\)的值,区间合并时,假设左区间是\(k_1\)\(b_1\),右区间是\(k_2\)\(b_2\),那么合并后就是\(k_2(k_1x+b_1)+b_2\),即\(k_1k_2\)\(k_2b_1+b_2\)

依次维护修改即可,详见代码。

#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;
const int mod = 1e9 + 7;
const int N = 5e5 + 5;
int n, m;
ll K[N << 2], B[N << 2];
struct node {ll k, b;}L, R, em;
char s[5];
inline int read()
{
	int x = 0, f = 1; char ch = getchar();
	while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
	while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
	return x * f;
}
void update(int k)
{
	K[k] = K[k << 1] * K[k << 1 | 1] % mod;
	B[k] = (K[k << 1 | 1] * B[k << 1] % mod + B[k << 1 | 1]) % mod;
}
void build(int k, int l, int r)
{
	if(l == r)
	{
		K[k] = read(); B[k] = read();
		return;
	}
	int mid = (l + r) >> 1;
	build(k << 1, l, mid);
	build(k << 1 | 1, mid + 1, r);
	update(k);
}
void change(int k, int l, int r, int x, int kk, int bb)
{
	if(l == r) return K[k] = kk, B[k] = bb, void();
	int mid = (l + r) >> 1;
	if(x <= mid) change(k << 1, l, mid, x, kk, bb);
	else change(k << 1 | 1, mid + 1, r, x, kk, bb);
	update(k);
}
node query(int k, int l, int r, int x, int y)
{
	if(x <= l && r <= y) return node{K[k], B[k]};
	int mid = (l + r) >> 1; ll lk = -1, lb = -1, rk = -1, rb = -1;
	if(x <= mid)
	{
		L = query(k << 1, l, mid, x, y);
		lk = L.k; lb = L.b;
	}
	if(y > mid)
	{
		R = query(k << 1 | 1, mid + 1, r, x, y);
		rk = R.k; rb = R.b;
	}
	if(lk == -1 && lb == -1) return node{rk, rb};
	else if(rk == -1 && rb == -1) return node{lk, lb};
	else return node{lk * rk % mod, (lb * rk % mod + rb) % mod};
}
int main()
{
	n = read(); m = read(); build(1, 1, n);
	int l, r, x, kk, bb;
	while(m -- > 0)
	{
		scanf("%s", s);
		if(s[0] == 'M')
		{
			x = read(); kk = read(); bb = read();
			change(1, 1, n, x, kk, bb);
		}
		else
		{
			l = read(); r = read(); x = read();
			em = query(1, 1, n, l, r);
			printf("%lld\n", (em.k * x % mod + em.b) % mod);
		}
	}
	return 0;
}
posted @ 2020-04-14 15:07  Sunny_r  阅读(687)  评论(0编辑  收藏  举报