BZOJ_4326_[NOIP2015]_运输计划_(二分+LCA_树链剖分/Tarjan+差分)

描述


http://www.lydsy.com/JudgeOnline/problem.php?id=4326

给出一棵带有边权的树,以及一系列任务,任务是从树上的u点走到v点,代价为u到v路径上的权值之和,总代价是所有任务代价中的最大代价.现在可以将某一个边权值变为0,问总代价最小是多少.

 

分析


最小化最大值,显然可以二分,转化为假定解判断是否可行的问题.

那么问题就转化成了判断但前假定解t是否可行.

如何做呢?

我们先求出每一个任务的代价,这个可以用随便什么LCA算法求,然后统计出其中超过假定解t的不合法的任务.这些不合法的任务的道路上必须有某条边的权值被该成0,但是只能改一条边,那么必须改动它们的公共边,也就是这些路径的交.

那么如何求这些路径的交呢?

如果我们用cnt[i]表示i和它父亲的连边被几条这样不合法的路径经过,那么我们要找的就是cnt[i]=(不合法路径数目)的边.

这个又该怎么实现呢?一条一条路径跑?显然太慢了!

想想如果把这个问题转化成线性的,在一个线段上的话该怎么做?

线段树?ok的,在树上的话显然要用链剖了,这样的复杂度是带一个log的.

有没有更好的方法?

差分.如果[l,r]的次数要+1,我们就把l位置+1,r+1位置-1,表示给l及其之后的全部+1次,再给r+1及其之后的全部-1次.全部操作结束后从前向后扫一遍,统计前面对后面的影响即可.

我们把这样的算法搬到树上就好了.

 

树链剖分:

 

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 const int maxn=300000+5;
 5 int n,m,cnt;
 6 int f[maxn],dep[maxn],sz[maxn],son[maxn],top[maxn],d[maxn],ct[maxn],head[maxn];
 7 struct edge{
 8     int to,d,next;
 9     edge(int to=0,int d=0,int next=0):to(to),d(d),next(next){}
10 }g[maxn<<1];
11 struct query{
12     int u,v,lca,l;
13 }q[maxn];
14 inline int read(int &x){ x=0; int k=1; char c; for(c=getchar();c<'0'||c>'9';c=getchar())if(c=='-') k=-1; for(;c>='0'&&c<='9';c=getchar()) x=x*10+c-'0'; return x*k; }
15 void add_edge(int u,int v,int d){
16     g[++cnt]=edge(v,d,head[u]); head[u]=cnt;
17     g[++cnt]=edge(u,d,head[v]); head[v]=cnt;
18 }
19 void dfs1(int u){
20     sz[u]=1;
21     for(int i=head[u];i;i=g[i].next){
22         int v=g[i].to;
23         if(v==f[u]) continue;
24         f[v]=u; dep[v]=dep[u]+1; d[v]=d[u]+g[i].d;
25         dfs1(v); sz[u]+=sz[v];
26         if(sz[v]>sz[son[u]]) son[u]=v;
27     }
28 }
29 void dfs2(int u){
30     if(son[u]) top[son[u]]=top[u], dfs2(son[u]);
31     for(int i=head[u];i;i=g[i].next){
32         int v=g[i].to;
33         if(v==f[u]||v==son[u]) continue;
34         top[v]=v; dfs2(v);
35     }
36 }
37 int lca(int u,int v){
38     while(top[u]!=top[v]){
39         if(dep[top[u]]<dep[top[v]]) swap(u,v);
40         u=f[top[u]];
41     }
42     return dep[u]<dep[v]?u:v;
43 }
44 void update(int u){
45     for(int i=head[u];i;i=g[i].next){
46         int v=g[i].to;
47         if(v==f[u]) continue;
48         update(v);
49         ct[u]+=ct[v];
50     }
51 }
52 inline bool C(int x){
53     int tot=0,maxi=0; memset(ct,0,sizeof ct);
54     for(int i=1;i<=m;i++){
55         if(q[i].l>x){
56             tot++;
57             ct[q[i].u]++;
58             ct[q[i].v]++;
59             ct[q[i].lca]-=2;
60             maxi=max(maxi,q[i].l);
61         }
62     }
63     update(1);
64     for(int i=1;i<=n;i++)if(ct[i]==tot&&maxi-(d[i]-d[f[i]])<=x) return true;
65     return false;
66 }
67 int bsearch(int l,int r){
68     while(l<r){
69         int mid=l+(r-l)/2;
70         if(C(mid)) r=mid;
71         else l=mid+1;
72     }
73     return l;
74 }
75 int main(){
76     int maxi=0,maxj=0;
77     read(n); read(m);
78     for(int i=1;i<n;i++){
79         int u,v,d; read(u); read(v); read(d);
80         add_edge(u,v,d);
81         maxi=max(maxi,d);
82     }
83     dfs1(1); dfs2(1);
84     for(int i=1;i<=m;i++){
85         read(q[i].u); read(q[i].v);
86         q[i].lca=lca(q[i].u,q[i].v);
87         q[i].l=d[q[i].u]+d[q[i].v]-2*d[q[i].lca];
88         maxj=max(maxj,q[i].l);
89     }
90     printf("%d\n",bsearch(max(0,maxj-maxi),maxj));
91     return 0;
92 }
View Code

 

Tarjan:

 

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 
 4 const int maxn=300000+5;
 5 int n,m,cnt1,cnt2;
 6 int f[maxn],p[maxn],d[maxn],head1[maxn],head2[maxn],ct[maxn];
 7 bool vis[maxn];
 8 struct edge{
 9     int to,d,next;
10     edge(int to=0,int d=0,int next=0):to(to),d(d),next(next){}
11 }g[maxn<<1];
12 struct Query{
13     int u,v,lca,l;
14 }Q[maxn];
15 struct query{
16     int v,id,next;
17     query(int v=0,int id=0,int next=0):v(v),id(id),next(next){}
18 }q[maxn<<1];
19 inline int read(int &x){ x=0;int k=1;char c;for(c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')k=-1;for(;c>='0'&&c<='9';c=getchar())x=x*10+c-'0';return x*k; }
20 inline int find(int x){ return x==f[x]?x:f[x]=find(f[x]); }
21 void add_edge(int u,int v,int d){
22     g[++cnt1]=edge(v,d,head1[u]); head1[u]=cnt1;
23     g[++cnt1]=edge(u,d,head1[v]); head1[v]=cnt1;
24 }
25 void add_query(int u,int v,int id){
26     q[++cnt2]=query(v,id,head2[u]); head2[u]=cnt2;
27     q[++cnt2]=query(u,id,head2[v]); head2[v]=cnt2;
28 }
29 void tarjan(int u){
30     f[u]=u; vis[u]=true;
31     for(int i=head1[u];i;i=g[i].next){
32         int v=g[i].to; if(v==p[u]) continue;
33         p[v]=u; d[v]=d[u]+g[i].d; 
34         tarjan(v); f[v]=u;
35     }
36     for(int i=head2[u];i;i=q[i].next)if(vis[q[i].v]) Q[q[i].id].lca=find(q[i].v),Q[q[i].id].l=d[u]+d[q[i].v]-2*d[Q[q[i].id].lca];
37 }
38 void update(int u){
39     for(int i=head1[u];i;i=g[i].next){
40         int v=g[i].to; if(v==p[u]) continue;
41         update(v); ct[u]+=ct[v];
42     }
43 }
44 inline bool C(int x){
45     int tot=0,maxi=0; memset(ct,0,sizeof ct);
46     for(int i=1;i<=m;i++)if(Q[i].l>x){
47         tot++; maxi=max(maxi,Q[i].l);
48         ct[Q[i].u]++; ct[Q[i].v]++; ct[Q[i].lca]-=2;
49     }
50     update(1);
51     for(int i=1;i<=n;i++)if(ct[i]==tot&&maxi-(d[i]-d[p[i]])<=x) return true;
52     return false;
53 }
54 int bsearch(int l,int r){
55     while(l<r){
56         int mid=l+(r-l)/2;
57         if(C(mid)) r=mid;
58         else l=mid+1;
59     }
60     return l;
61 }
62 int main(){
63     read(n); read(m);
64     int maxi=0,maxj=0;
65     for(int i=1;i<n;i++){
66         int u,v,d; read(u); read(v); read(d);
67         add_edge(u,v,d);
68         maxi=max(maxi,d);
69     }
70     for(int i=1;i<=m;i++){
71         read(Q[i].u); read(Q[i].v);
72         add_query(Q[i].u,Q[i].v,i);
73     }
74     tarjan(1);
75     for(int i=1;i<=m;i++) maxj=max(maxj,Q[i].l);
76     printf("%d\n",bsearch(max(0,maxj-maxi),maxj));
77     return 0;
78 }
View Code

 

4326: NOIP2015 运输计划

Time Limit: 30 Sec  Memory Limit: 128 MB
Submit: 538  Solved: 368
[Submit][Status][Discuss]

Description

公 元 2044 年,人类进入了宇宙纪元。L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球。小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰。为了鼓励科技创新, L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的物流公司的阶段性工作就完成了。如果小 P 可以自由选择将哪一条航道改造成虫洞, 试求出小 P 的物流公司完成阶段性工作所需要的最短时间是多少?

Input

第一行包括两个正整数 n,m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。接下来 n−1 行描述航道的建设情况,其中第 i 行包含三个整数 ai,bi 和 ti,表示第 i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。数据保证 1≤ai,bi≤n 且 0≤ti≤1000。接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个运输计划是从 uj 号星球飞往 vj号星球。数据保证 1≤ui,vi≤n

Output

输出文件只包含一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

Sample Input

6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5

Sample Output

11

HINT


将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。

将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。

将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。

将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。

将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。

故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。

 

 

posted @ 2016-06-19 21:14  晴歌。  阅读(209)  评论(0编辑  收藏  举报