POJ_1065_Wooden_Sticks_(动态规划,LIS+鸽笼原理)
描述
http://poj.org/problem?id=1065
木棍有重量 w 和长度 l 两种属性,要使 l 和 w 同时单调不降,否则切割机器就要停一次,问最少停多少次(开始时停一次).
Wooden Sticks
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 21277 | Accepted: 9030 |
Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l <= l' and w <= w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are ( 9 , 4 ) , ( 2 , 5 ) , ( 1 , 2 ) , ( 5 , 3 ) , and ( 4 , 1 ) , then the minimum setup time should be 2 minutes since there is a sequence of pairs ( 4 , 1 ) , ( 5 , 3 ) , ( 9 , 4 ) , ( 1 , 2 ) , ( 2 , 5 ) .
Input
The
input consists of T test cases. The number of test cases (T) is
given in the first line of the input file. Each test case consists of
two lines: The first line has an integer n , 1 <= n <=
5000 , that represents the number of wooden sticks in the test
case, and the second line contains 2n positive integers l1 , w1
, l2 , w2 ,..., ln , wn , each of magnitude at most 10000 ,
where li and wi are the length and weight of the i th wooden
stick, respectively. The 2n integers are delimited by one or more
spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1
Sample Output
2 1 3
Source
分析
神原理...
要求最少停多少次,就是要求单调不降的子序列的个数 x 最多为多少(每次停完都是一个单调不降的子序列),问题转化为求 x 的最小值.
我们现将木棍按照其中一种属性升序(不降)排序,这时另一种属性的最长下降子序列的长度记为 L .可以证明 x >=L.(鸽笼原理).
详细题解:
http://www.hankcs.com/program/cpp/poj-1065-wooden-sticks.html
注意:
1.二分的边界.在找满足 a [ k ] <= -1 的 k 的最小值时,可能 dp 数组中已经没有 -1 了,也就是 n 个位置全部被占满了,也就是整个序列就是一个下降序列,此时会找到 n 的位置,再 -1 答案就错误了,所以开始的时候将 1 ~ n + 1 都赋为 -1 ,之后 dp 时查找在 1 ~ n 查找,因为 dp 结束之前最多是 n - 1 个,不会把 dp 数组填满,数组中一定还有 -1 ,就一定存在满足 a [ k ] <= v (v>0) 的 k ,计算总长度时在 1~n+1 查找,确保有满足 a [ k ] <= -1 的 k .
1 #include<cstdio> 2 #include<algorithm> 3 #define read(a) a=getnum() 4 #define for1(i,a,n) for(int i=(a);i<=(n);i++) 5 using namespace std; 6 7 const int maxn=5005; 8 struct node {int l,w;}wood[maxn]; 9 int q,n; 10 int dp[maxn]; 11 12 inline int getnum(){ int r=0,k=1;char c;for(c=getchar();c<'0'||c>'9';c=getchar()) if(c=='-') k=-1;for(;c>='0'&&c<='9';c=getchar()) r=r*10+c-'0'; return r*k; } 13 14 bool comp(node x,node y) { return x.l<y.l; } 15 16 int bsearch(int l,int r,int v) 17 { 18 while(l<r) 19 { 20 int m=l+(r-l)/2; 21 if(dp[m]<=v) r=m; 22 else l=m+1; 23 } 24 return l; 25 } 26 27 void solve() 28 { 29 sort(wood+1,wood+n+1,comp); 30 for1(i,1,n+1) dp[i]=-1; 31 for1(i,1,n) 32 { 33 int idx=bsearch(1,n,wood[i].w); 34 dp[idx]=wood[i].w; 35 } 36 int ans=bsearch(1,n+1,-1)-1; 37 printf("%d\n",ans); 38 } 39 40 void init() 41 { 42 read(q); 43 while(q--) 44 { 45 read(n); 46 for1(i,1,n) { read(wood[i].l); read(wood[i].w); } 47 solve(); 48 49 } 50 } 51 52 int main() 53 { 54 #ifndef ONLINE_JUDGE 55 freopen("wood.in","r",stdin); 56 freopen("wood.out","w",stdout); 57 #endif 58 init(); 59 #ifndef ONLINE_JUDGE 60 fclose(stdin); 61 fclose(stdout); 62 system("wood.out"); 63 #endif 64 return 0; 65 }