动态规划之矩阵链乘

 1 package main  2
 3 import (  4     "fmt"
 5 )  6
 7 //计算矩阵链乘所需最少乘法运算数
 8 func matrixChain(chain []int) int {  9     length := len(chain) - 1        //矩阵个数
10     matrix := make([][]int, length) //用来存储第i至第j个矩阵链乘所需乘法运算最少数
11     var i, j, k, m, n, temp, min int
12     for i = 0; i < length; i++ { //创建length*length矩阵
13         matrix[i] = make([]int, length) 14         matrix[i][i] = 0 //矩阵对角线为0,方便矩阵第二条对角线的上的元素的运算
15  } 16     for i = 1; i < length; i++ { //循环对角线数次
17         m = length - i 18         for j = 0; j < m; j++ { //对角线长度
19             min = -1
20             n = i + j 21             for k = j; k < n; k++ { //从标准中对角线至该对角线距离
22                 temp = matrix[j][k] + matrix[k+1][n] + chain[j]*chain[k+1]*chain[n+1] //任意两个矩阵相乘需要对应chain数组上的数目(及该矩阵的行数)和第二个矩阵的列数(存储在该矩阵对应的chain元素的下一个元素值)
23                 if temp < min || min == -1 { 24                     min = temp 25  } 26  } 27             matrix[j][n] = min 28  } 29  } 30
31     for i = 0; i < length; i++ { 32         for j = i; j < length; j++ { 33             fmt.Print(matrix[i][j], "\t") 34  } 35         fmt.Println("") 36  } 37     return matrix[0][length-1] 38 } 39
40 func main() { 41     array := []int{5, 10, 4, 6, 10, 2} 42  matrixChain(array) 43 }

 

posted @ 2013-11-05 14:44  Sunlnx  阅读(249)  评论(0)    收藏  举报