WCF后续之旅(6): 通过WCF Extension实现Context信息的传递
Posted on 2010-04-30 12:56 Happy Coding 阅读(280) 评论(0) 编辑 收藏 举报在上一篇文章中,我们讨论了如何通过CallContextInitializer实现Localization的例子,具体的做法是将client端的culture通过SOAPheader传到service端,然后通过自定义的CallContextInitializer设置当前方法执行的线程culture。在client端,当前culture信息是通过OperationContext.Current.OutgoingMessageHeaders手工至于SOAPHeader中的。实际上,我们可以通过基于WCF的另一个可扩展对象来实现这段逻辑,这个可扩展对象就是MessageInspector。我们今天来讨论MessageInspector应用的另外一个场景:如何通过MessageInspector来传递Context信息。
1. Ambient Context
在一个多层结构的应用中,我们需要传递一些上下文的信息在各层之间传递,比如:为了进行Audit,需要传递一些当前当前userprofile的一些信息。在一些分布式的环境中也可能遇到context信息从client到server的传递。如何实现这种形式的Context信息的传递呢?我们有两种方案:
一、将Context作为参数传递:将context作为API的一部分,context的提供者在调用context接收者的API的时候显式地设置这些Context信息,context的接收者则直接通过参数将context取出。这虽然能够解决问题,但决不是一个好的解决方案,因为API应该只和具体的业务逻辑有关,而context一般是与非业务逻辑服务的,比如Audit、Logging等等。此外,将context纳入API作为其一部分,将降低API的稳定性,比如,今天只需要当前user所在组织的信息,明天可能需求获取当前客户端的IP地址,你的API可以会经常变动,这显然是不允许的。
二、创建Ambient Context来保存这些context信息,AmbientContext可以在不同的层次之间、甚至是分布式环境中每个节点之间共享或者传递。比如在ASP.NET应用中,我们通过SessionSate来存储当前Session的信息;通过HttpContext来存储当前Httprequest的信息。在非Web应用中,我们通过CallContext将context信息存储在TLS(Thread LocalStorage)中,当前线程下执行的所有代码都可以访问并设置这些context数据。
2、Application Context
介于上面所述,我创建一个名为Application Context的AmbientContext容器,Application Context实际上是一个dictionary对象,通过key-valuepair进行context元素的设置,通过key获取相对应的context元素。ApplicationContext通过CallContext实现,定义很简单:
{
[Serializable]
public class ApplicationContext:Dictionary<string,object>
{
private const string CallContextKey = "__ApplicationContext";
internal const string ContextHeaderLocalName = "__ApplicationContext";
internal const string ContextHeaderNamespace = "urn:artech.com";
private void EnsureSerializable(object value)
{
if (value == null)
{
throw new ArgumentNullException("value");
}
if (!value.GetType().IsSerializable)
{
throw new ArgumentException(string.Format("The argument of the type \"{0}\" is not serializable!", value.GetType().FullName));
}
}
public new object this[string key]
{
get
{
return base[key];
}
set
{
this.EnsureSerializable(value);
base[key] = value;
}
}
public int Counter
{
get
{
return (int)this["__Count"];
}
set
{
this["__Count"] = value;
}
}
public static ApplicationContext Current
{
get
{
if (CallContext.GetData(CallContextKey) == null)
{
CallContext.SetData(CallContextKey, new ApplicationContext());
}
return CallContext.GetData(CallContextKey) as ApplicationContext;
}
set
{
CallContext.SetData(CallContextKey, value);
}
}
}
}
由于此Context将会置于SOAPHeader中从client端向service端进行传递,我们需要为此message header指定一个localname和namespace,那么在service端,才能通过此local name和namespace获得此messageheader。同时,在lcoal domain,client或者service,context是通过CallContext进行存取的,CallContext也是一个类似于disctionary的结构,也需要为此定义一个Key:
private const string CallContextKey ="__ApplicationContext"; internal const string ContextHeaderLocalName ="__ApplicationContext";
internal const string ContextHeaderNamespace = "urn:artech.com";
由于ApplicaitonContext直接继承自Dictionary<string,object>,我们可以通过Index进行元素的设置和提取,考虑到context的跨域传播,需要进行序列化,所以重写了Indexer,并添加了可序列化的验证。为了后面演示方面,我们定义一个context item:Counter。
Static类型的Current属性通过CallContext的SetData和GetData方法对当前的ApplicationContext进行设置和提取:
{
get
{
if (CallContext.GetData(CallContextKey) == null)
{
CallContext.SetData(CallContextKey, new ApplicationContext());
}
return CallContext.GetData(CallContextKey) as ApplicationContext;
}
set
{
CallContext.SetData(CallContextKey, value);
}
}
3、通过MessageInspector将AppContext置于SOAP header中
通过本系列第3部分对Dispatchingsystem的介绍了,我们知道了在client端和service端,可以通过MessageInspector对requestmessage或者reply message (incoming message或者outgoingsmessage)进行检验。MessageInspector可以对MessageHeader进行自由的添加、修改和删除。在service端的MessageInspector被称为DispatchMessageInspector,相对地,client端被称为ClientMessageInspector。我们现在自定义我们自己的ClientMessageInspector。
{
public class ContextAttachingMessageInspector:IClientMessageInspector
{
public bool IsBidirectional
{ get; set; }
public ContextAttachingMessageInspector()
: this(false)
{ }
public ContextAttachingMessageInspector(bool isBidirectional)
{
this.IsBidirectional = IsBidirectional;
}
IClientMessageInspector Members
}
}
一般地,我们仅仅需要Context的单向传递,也就是从client端向service端传递,而不需要从service端向client端传递。不过回来应付将来潜在的需求,也许可能需要这样的功能:context从client端传向service端,service对其进行修改后需要将其返回到client端。为此,我们家了一个属性:IsBidirectional表明是否支持双向传递。
在BeforeSendRequest,我们将ApplicationContext.Current封装成一个MessageHeader, 并将此MessageHeader添加到request message 的header集合中,localname和namespace采用的是定义在ApplicationContext中常量:
{
MessageHeader<ApplicationContext> contextHeader = new MessageHeader<ApplicationContext>(ApplicationContext.Current);
request.Headers.Add(contextHeader.GetUntypedHeader(ApplicationContext.ContextHeaderLocalName, ApplicationContext.ContextHeaderNamespace));
return null;
}
如何支持context的双向传递,我们在AfterReceiveReply负责从reply message中接收从service传回的context,并将其设置成当前的context:
{
if (IsBidirectional)
{
return;
}
if (reply.Headers.FindHeader(ApplicationContext.ContextHeaderLocalName, ApplicationContext.ContextHeaderNamespace) < 0)
{
return;
}
ApplicationContext context = reply.Headers.GetHeader<ApplicationContext>(ApplicationContext.ContextHeaderLocalName, ApplicationContext.ContextHeaderNamespace);
if (context == null)
{
return;
}
ApplicationContext.Current = context;
}
4、通过ContextInitializer实现对Context的接收
上面我们介绍了在client端通过ClientMessageInspector将context信息存储到request messageheader中,照理说我们通过可以通过DispatchMessageInspector实现对context信息的提取,但是考虑到我们设置context是通过CallContext来实现了,我们最好还是使用CallContextInitializer来做比较好一些。CallContextInitializer的定义,我们在上面一章已经作了详细的介绍了,在这里就不用多说什么了。
{
public class ContextReceivalCallContextInitializer : ICallContextInitializer
{
public bool IsBidirectional
{ get; set; }
public ContextReceivalCallContextInitializer()
: this(false)
{ }
public ContextReceivalCallContextInitializer(bool isBidirectional)
{
this.IsBidirectional = isBidirectional;
}
ICallContextInitializer Members
}
}
代码其实很简单,BeforeInvoke中通过localname和namespace提取context对应的messageheader,并设置当前的ApplicationContext。如果需要双向传递,则通过AfterInvoke方法将context保存到reply message的header中被送回client端。
5. 为MessageInspector和CallContextInitializer创建behavior:
{
public class ContextPropagationBehavior: IEndpointBehavior
{
public bool IsBidirectional
{ get; set; }
public ContextPropagationBehavior()
: this(false)
{ }
public ContextPropagationBehavior(bool isBidirectional)
{
this.IsBidirectional = isBidirectional;
}
IEndpointBehavior Members
}
}
在ApplyClientBehavior中,创建我们的ContextAttachingMessageInspector对象,并将其放置到ClientRuntime的MessageInspectors集合中;在ApplyDispatchBehavior,将ContextReceivalCallContextInitializer对象放到每个DispatchOperation的CallContextInitializers集合中。
因为我们需要通过配置的方式来使用我们的ContextPropagationBehavior,我们还需要定义对应的BehaviorExtensionElement:
{
public class ContextPropagationBehaviorElement:BehaviorExtensionElement
{
[ConfigurationProperty("isBidirectional", DefaultValue = false)]
public bool IsBidirectional
{
get
{
return (bool)this["isBidirectional"];
}
set
{
this["isBidirectional"] = value;
}
}
public override Type BehaviorType
{
get
{
return typeof(ContextPropagationBehavior);
}
}
protected override object CreateBehavior()
{
return new ContextPropagationBehavior(this.IsBidirectional);
}
}
}
我们IsBidirectional则可以通过配置的方式来指定。
6. Context Propagation的运用
我们现在将上面创建的对象应用到真正的WCF调用环境中。我们依然创建我们经典的4层结构:
- Artech.ContextPropagation.Contract:
{
[ServiceContract]
public interface IContract
{
[OperationContract]
void DoSomething();
}
}
- Artech.ContextPropagation.Services
{
public class Service:IContract
{
IContract Members
}
}
打印出ApplicationContext.Current.Count 的值,并加1。
- Hosting的Config:
<system.serviceModel>
<behaviors>
<endpointBehaviors>
<behavior name="contextPropagationBehavior">
<contextPropagationElement isBidirectional="true" />
</behavior>
</endpointBehaviors>
</behaviors>
<client>
<endpoint address="http://127.0.0.1/service" behaviorConfiguration="contextPropagationBehavior"
binding="basicHttpBinding" contract="Artech.ContextPropagation.Contract.IContract"
name="service" />
</client>
<extensions>
<behaviorExtensions>
<add name="contextPropagationElement" type="Artech.ContextPropagation.ContextPropagationBehaviorElement, Artech.ContextPropagation, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
</behaviorExtensions>
</extensions>
</system.serviceModel>
</configuration>
Artech.ContextPropagation.Client
{
class Program
{
static void Main(string[] args)
{
using (ChannelFactory<IContract> channelFactory = new ChannelFactory<IContract>("service"))
{
IContract proxy = channelFactory.CreateChannel();
ApplicationContext.Current.Counter = 100;
Console.WriteLine("Brfore service invocation: ApplicationContext.Current.Count = {0}", ApplicationContext.Current.Counter);
proxy.DoSomething();
Console.WriteLine("After service invocation: ApplicationContext.Current.Count = {0}", ApplicationContext.Current.Counter);
Console.Read();
}
}
}
}
以及config:
<system.serviceModel>
<behaviors>
<endpointBehaviors>
<behavior name="contextPropagationBehavior">
<contextPropagationElement isBidirectional="true" />
</behavior>
</endpointBehaviors>
</behaviors>
<client>
<endpoint address="http://127.0.0.1/service" behaviorConfiguration="contextPropagationBehavior"
binding="basicHttpBinding" contract="Artech.ContextPropagation.Contract.IContract"
name="service" />
</client>
<extensions>
<behaviorExtensions>
<add name="contextPropagationElement" type="Artech.ContextPropagation.ContextPropagationBehaviorElement, Artech.ContextPropagation, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
</behaviorExtensions>
</extensions>
</system.serviceModel>
</configuration>
我们运行整个程序,你将会看到如下的输出结果:
可见,Context被成功传播到service端。再看看client端的输出:
由此可见,在service端设置的context的值也成功返回到client端,真正实现了双向传递。
P.S:SOA主张Stateless的service,也就是说每次调用service都应该是相互独立的。context的传递实际上却是让每次访问有了状态,这实际上是违背了SOA的原则。所以,如何对于真正的SOA的设计与架构,个人觉得这种方式是不值得推荐的。但是,如何你仅仅是将WCF作为传统的分布式手段,那么这可能会给你的应用带了很大的便利。