import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from tqdm import tqdm
classCNN(nn.Module):
def__init__(self,in_channels=1,num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=1,out_channels=8,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.pool = nn.MaxPool2d(kernel_size=(2,2),stride=(2,2))
self.conv2 = nn.Conv2d(in_channels=8,out_channels=16,kernel_size=(3,3),stride=(1,1),padding=(1,1))
self.fc1 = nn.Linear(16*7*7,num_classes)
defforward(self,x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0],-1)
x = self.fc1(x)
return x
# Set device
device = torch.device("cuda"if torch.cuda.is_available() else"cpu")
print(device)
# Hyperparameters
in_channels = 1
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 5# Load Data
train_dataset = datasets.MNIST(root="dataset/",train=True,transform=transforms.ToTensor(),download=True)
train_loader = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
test_dataset = datasets.MNIST(root="dataset/",train=False,transform=transforms.ToTensor(),download=True)
test_loader = DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)
# Initialize network
model = CNN().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(),lr=learning_rate)
# Train Networkfor epoch inrange(num_epochs):
# for data,targets in tqdm(train_loadr,leave=False) # 进度显示在一行for data,targets in tqdm(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores,targets)
# backward
optimizer.zero_grad()
loss.backward()
# gardient descent or adam step
optimizer.step()