Pandas | 09 迭代

Pandas对象之间的基本迭代的行为取决于类型。当迭代一个系列时,它被视为数组式,基本迭代产生这些值。其他数据结构,如:DataFramePanel,遵循类似惯例,迭代对象的键。

简而言之,基本迭代(对于i在对象中)产生 -

  • Series - 值
  • DataFrame - 列标签
  • Pannel - 项目标签

迭代DataFrame

  迭代DataFrame默认迭代对象的键(列)。

import pandas as pd
import numpy as np

N=20

df = pd.DataFrame({
    'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
    'x': np.linspace(0,stop=N-1,num=N),
    'y': np.random.rand(N),
    'C': np.random.choice(['Low','Medium','High'],N).tolist(),
    'D': np.random.normal(100, 10, size=(N)).tolist()
    })

print(df)
print('\n')

for col in df:
   print (col)

输出结果:

            A     x         y       C           D
0 2016-01-01 0.0 0.433094 Medium 122.454137
1 2016-01-02 1.0 0.702406 Low 87.920907
2 2016-01-03 2.0 0.106648 Low 110.453026
3 2016-01-04 3.0 0.553946 High 93.357313
4 2016-01-05 4.0 0.055309 Medium 101.677134
5 2016-01-06 5.0 0.870506 Low 93.611441
6 2016-01-07 6.0 0.265124 High 89.684828
7 2016-01-08 7.0 0.608606 Medium 106.256583
8 2016-01-09 8.0 0.915061 High 87.611971
9 2016-01-10 9.0 0.403021 Medium 118.759460
10 2016-01-11 10.0 0.042113 Medium 96.181790
11 2016-01-12 11.0 0.740301 Low 105.394580
12 2016-01-13 12.0 0.996189 Low 101.069863
13 2016-01-14 13.0 0.204401 Medium 107.772976
14 2016-01-15 14.0 0.595775 High 93.862074
15 2016-01-16 15.0 0.449922 Medium 95.686896
16 2016-01-17 16.0 0.649613 Low 95.902673
17 2016-01-18 17.0 0.549016 Medium 103.786598
18 2016-01-19 18.0 0.428497 Medium 82.460432
19 2016-01-20 19.0 0.426844 High 107.196597


A
x
y
C
D

要遍历数据帧(DataFrame)中的,可以使用以下函数:

  • iteritems() - 迭代(key,value)对;
  • iterrows() - 将行迭代为(索引,系列)对;
  • itertuples() - 以namedtuples的形式迭代行;

 

1. iteritems()

  将每个列作为键,将值与值作为键和列值,迭代为Series对象。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3'])

print(df)
print('\n')

for key,value in df.iteritems():
   print (key,value,'\n')

输出结果:

       col1      col2      col3
0 0.096004 1.836687 0.513612
1 0.506905 -0.042988 -0.438362
2 -1.425654 1.081005 0.182610
3 -0.746107 -0.971394 -0.204752


col1 0 0.096004
1 0.506905
2 -1.425654
3 -0.746107
Name: col1, dtype: float64

col2 0 1.836687
1 -0.042988
2 1.081005
3 -0.971394
Name: col2, dtype: float64

col3 0 0.513612
1 -0.438362
2 0.182610
3 -0.204752
Name: col3, dtype: float64

 

观察一下,单独迭代每个列作为系列中的键值对。

 

2. iterrows()

  iterrows()返回迭代器,产生每个索引值以及包含每行数据的序列。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for row_index,row in df.iterrows():
   print (row_index,row,'\n')

输出结果:

0  col1    1.529759
   col2    0.762811
   col3   -0.634691
Name: 0, dtype: float64

1  col1   -0.944087
   col2    1.420919
   col3   -0.507895
Name: 1, dtype: float64

2  col1   -0.077287
   col2   -0.858556
   col3   -0.663385
Name: 2, dtype: float64
3  col1    -1.638578
   col2     0.059866
   col3     0.493482
Name: 3, dtype: float64
 

注意 - 由于iterrows()遍历行,因此不会跨该行保留数据类型。0,1,2是行索引,col1col2col3是列索引。

 

3. itertuples()

itertuples()方法将为DataFrame中的每一行返回一个产生一个命名元组的迭代器元组的第一个元素将是行的相应索引值,而剩余的值是行值。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for row in df.itertuples(): print (row)

输出结果:

Pandas(Index=0, col1=1.5297586201375899, col2=0.76281127433814944, col3=-0.6346908238310438)
Pandas(Index=1, col1=-0.94408735763808649, col2=1.4209186418359423, col3=-0.50789517967096232)
Pandas(Index=2, col1=-0.07728664756791935, col2=-0.85855574139699076, col3=-0.6633852507207626)
Pandas(Index=3, col1=0.65734942534106289, col2=-0.95057710432604969,col3=0.80344487462316527)
posted @ 2019-11-01 20:08  PythonGirl  阅读(228)  评论(0编辑  收藏  举报