Pandas | 06 描述性统计

有很多方法用来集体计算DataFrame的描述性统计信息和其他相关操作。 其中大多数是sum()mean()等聚合函数。 一般来说,这些方法采用轴参数,就像ndarray.{sum,std,...},但轴可以通过名称或整数来指定:

  • 数据帧(DataFrame) - “index”(axis=0,默认),columns(axis=1)

 

下面创建一个数据帧(DataFrame),并使用此对象进行演示本章中所有操作。

import pandas as pd


d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}


df = pd.DataFrame(d)
print(df)

输出结果:

    Age  Name   Rating
0   25   Tom     4.23
1   26   James   3.24
2   25   Ricky   3.98
3   23   Vin     2.56
4   30   Steve   3.20
5   29   Minsu   4.60
6   23   Jack    3.80
7   34   Lee     3.78
8   40   David   2.98
9   30   Gasper  4.80
10  51   Betina  4.10
11  46   Andres  3.65

sum()

返回所请求轴的值的总和。 默认情况下,轴为列名(axis=0)

import pandas as pd


d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}


df = pd.DataFrame(d)
print(df.sum())

输出结果:

Age                                                    382
Name     TomJamesRickyVinSteveMinsuJackLeeDavidGasperBe...
Rating                                               44.92
dtype: object
 

示例axis=1

import pandas as pd


d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}



df = pd.DataFrame(d)
print(df.sum(1))

输出结果:

0    29.23
1    29.24
2    28.98
3    25.56
4    33.20
5    33.60
6    26.80
7    37.78
8    42.98
9    34.80
10   55.10
11   49.65
dtype: float64
 

mean()
  返回平均值

import pandas as pd


d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}


df = pd.DataFrame(d)
print(df.mean())

输出结果:

Age       31.833333
Rating     3.743333
dtype: float64
 

std()

  返回标准差。

import pandas as pd


d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}


df = pd.DataFrame(d)
print(df.std())

输出结果:

Age       9.232682
Rating    0.661628
dtype: float64
 

函数和说明

下面来了解Python Pandas中描述性统计信息的函数,下表列出了重要函数

编号函数描述
1 count() 非空观测数量
2 sum() 所有值之和
3 mean() 所有值的平均值
4 median() 所有值的中位数
5 mode() 值的模值
6 std() 值的标准偏差
7 min() 所有值中的最小值
8 max() 所有值中的最大值
9 abs() 绝对值
10 prod() 数组元素的乘积
11 cumsum() 累计总和
12 cumprod() 累计乘积

注 - 由于DataFrame是异构数据结构。通用操作不适用于所有函数。

 

  • 类似于:sum()cumsum()函数能与数字和字符(或)字符串数据元素一起工作,不会产生任何错误。字符聚合从来都比较少被使用,虽然这些函数不会引发任何异常。
  • 由于这样的操作无法执行,因此,当DataFrame包含字符或字符串数据时,像abs()cumprod()这样的函数会抛出异常。

汇总数据

describe()函数是用来计算有关DataFrame列的统计信息的摘要

1. 描述数字系列

import pandas as pd


d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}


df = pd.DataFrame(d)
print(df.describe())

输出结果:

               Age         Rating
count    12.000000      12.000000
mean     31.833333       3.743333
std       9.232682       0.661628
min      23.000000       2.560000
25%      25.000000       3.230000
50%      29.500000       3.790000
75%      35.500000       4.132500
max      51.000000       4.800000
 
其结果将包括count,mean,std,min,max以及百分位数。默认情况下,百分位数分三档:25%,50%,75%,其中第50百分位数就是中位数。
count:计数,这一组数据中包含数据的个数 mean:平均值,这一组数据的平均值 std:标准差,这一组数据的标准差 min:最小值 max:最大值 百分位数:第p百分位数是这样一个值,它使得至少有p
%的数据项小于或等于这个值,且至少有(100-p)%的数据项大于或等于这个值。以身高为例,身高分布的第五百分位表示有5%的人的身高小于此测量值,95%的身高大于此测量值。

 

2. 描述一个分类系列

import pandas as pd

s = pd.Series(['a', 'a', 'b', 'c'])
print(s.describe())

输出结果:

count      4
unique    3
top     a
freq      2
dtype: object

其结果包括count,unique,top,和freq。时间数据还包括first和last项目。

count:同上
unique:表示有多少种不同的值
top:数据中出现次数最高的值
freq:出现次数最高的那个值(top)的出现频率

 

3. 描述时间戳系列

import pandas as pd
import numpy as np

s = pd.Series([np.datetime64("2000-01-01"),
               np.datetime64("2010-01-01"),
               np.datetime64("2010-01-01")
               ])

print(s.describe())

输出结果:

count        3
unique      2
top    2010-01-01 00:00:00
freq        2
first    2000-01-01 00:00:00
last    2010-01-01 00:00:00
dtype: object

 

使用include和exclude参数来限制DataFrame中哪些列被分析输出

  • object - 汇总字符串列
  • number - 汇总数字列
  • all - 将所有列汇总在一起(不应将其作为列表值传递)

 (1)如果include ='all'作为选项提供,所有列,而不管数据类型如何。

import pandas as pd

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
     'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
     'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(include='all'))

输出结果:

         Name        Age     Rating
count 12 12.000000 12.000000
unique 12 NaN NaN
top Steve NaN NaN
freq 1 NaN NaN
mean NaN 31.833333 3.743333
std NaN 9.232682 0.661628
min NaN 23.000000 2.560000
25% NaN 25.000000 3.230000
50% NaN 29.500000 3.790000
75% NaN 35.500000 4.132500
max NaN 51.000000 4.800000


(2)在DataFrame描述中只包含字符串列
import pandas as pd
import numpy as np

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
     'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
     'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(include=[np.object]))

 (3)在DataFrame描述中仅包含数字列

import pandas as pd
import numpy as np

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
     'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
     'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(include=[np.number]))

输出结果:

             Age     Rating
count 12.000000 12.000000
mean 31.833333 3.743333
std 9.232682 0.661628
min 23.000000 2.560000
25% 25.000000 3.230000
50% 29.500000 3.790000
75% 35.500000 4.132500
max 51.000000 4.800000

从DataFrame描述中排除对象列。
import pandas as pd
import numpy as np

d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack','Lee','David','Gasper','Betina','Andres']),
     'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
     'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}
df = pd.DataFrame(d)
print(df.describe(exclude=[np.object]))

输出结果:

             Age     Rating
count 12.000000 12.000000
mean 31.833333 3.743333
std 9.232682 0.661628
min 23.000000 2.560000
25% 25.000000 3.230000
50% 29.500000 3.790000
75% 35.500000 4.132500
max 51.000000 4.800000
import pandas as pd


d = {'Name':pd.Series(['Tom','James','Ricky','Vin','Steve','Minsu','Jack',
   'Lee','David','Gasper','Betina','Andres']),
   'Age':pd.Series([25,26,25,23,30,29,23,34,40,30,51,46]),
   'Rating':pd.Series([4.23,3.24,3.98,2.56,3.20,4.6,3.8,3.78,2.98,4.80,4.10,3.65])}


df = pd.DataFrame(d)
print(df.describe(include=['object']))

输出结果:

          Name
count       12
unique      12
top      Ricky
freq         1
 
 以下3种书写方式均可
df.describe(include=['object'])
df.describe(include='object')
df.describe(include=np.object)

 

 

posted @ 2019-10-30 22:12  PythonGirl  阅读(1016)  评论(0编辑  收藏  举报