Pandas | 01 数据结构
Pandas的三种数据结构:
- 系列(
Series
) - 数据帧(
DataFrame
) - 面板(
Panel
)
这些数据结构,构建在Numpy数组之上,这意味着它们很快
维数和描述
考虑这些数据结构的最好方法是,较高维数据结构是其较低维数据结构的容器。 例如,DataFrame
是Series
的容器,Panel
是DataFrame
的容器。
数据结构 | 维数 | 描述 |
---|---|---|
系列 | 1 | 1 D标记均匀数组,大小不变。 |
数据帧 | 2 | 一般2 D标记,大小可变的表结构与潜在的异质类型的列。 |
面板 | 3 | 一般3 D标记,大小可变数组。 |
构建和处理两个或更多个维数组是一项繁琐的任务,用户在编写函数时要考虑数据集的方向。 但是使用Pandas数据结构,减少了用户的思考。例如,使用表格数据(DataFrame
),在语义上更有用于考虑索引(行)和列,而不是轴0
和轴1
。
可变性
所有Pandas数据结构是值可变的(可以更改),除了系列都是大小可变的。系列是大小不变的。
注 -
DataFrame
被广泛使用,是最重要的数据结构之一。面板使用少得多。
一、系列
系列是具有均匀数据的一维数组结构。例如,以下系列是整数:10
,23
,56
,...
的集合。
关键点
- 均匀数据
- 尺寸大小不变
- 数据的值可变
二、数据帧
数据帧(DataFrame)是一个具有异构数据的二维数组。 例如,
姓名 | 年龄 | 性别 | 等级 |
---|---|---|---|
Maxsu | 25 | 男 | 4.45 |
Katie | 34 | 女 | 2.78 |
Vina | 46 | 女 | 3.9 |
Lia | 女 | x女 | 4.6 |
上表数据以行和列表示。每列表示一个属性,每行代表一个人。
列的数据类型
上面数据帧中四列的数据类型如下:
列 | 类型 |
---|---|
姓名 | 字符串 |
年龄 | 整数 |
性别 | 字符串 |
等级 | 浮点型 |
关键点
- 异构数据
- 大小可变
- 数据可变
三、面板
面板是具有异构数据的三维数据结构。在图形表示中很难表示面板。但是一个面板可以说明为DataFrame
的容器。
关键点
- 异构数据
- 大小可变
- 数据可变