Numpy | 09 高级索引
NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。
整数数组索引
实例1:获取数组中(0,0),(1,1)和(2,0)位置处的元素
import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0, 1, 2], [0, 1, 0]] print(y)
输出结果为:
[1 4 5]
实例2:获取了 4x3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。*****
import numpy as np x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) print('我们的数组是:') print(x) print('\n') rows = np.array([[0, 0], [3, 3]]) cols = np.array([[0, 2], [0, 2]]) y = x[rows, cols] print('这个数组的四个角元素是:') print(y)
输出结果为:
我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
这个数组的四个角元素是:
[[ 0 2]
[ 9 11]]
返回的结果是包含每个角元素的 ndarray 对象。
实例3:借助切片 : 或 … 与索引数组组合
import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) b = a[1:3, 1:3] c = a[1:3, [1, 2]] d = a[..., 1:] print(a) print('\n') print(b) print('\n') print(c) print('\n') print(d) print('\n')
输出结果为:
[[1 2 3]
[4 5 6]
[7 8 9]]
[[5 6]
[8 9]]
[[5 6]
[8 9]]
[[2 3]
[5 6]
[8 9]]
布尔索引
我们可以通过一个布尔数组来索引目标数组。
布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。
实例1:获取大于 5 的元素
import numpy as np x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) print('我们的数组是:') print(x) print('\n') print('大于 5 的元素是:') print(x[x > 5])
输出结果为:
我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
大于 5 的元素是:
[ 6 7 8 9 10 11]
实例2:使用了 ~(取补运算符)来过滤 NaN
import numpy as np a = np.array([np.nan, 1,2,np.nan,3,4,5]) print (a[~np.isnan(a)])
输出结果为:
[ 1. 2. 3. 4. 5.]
实例3:如何从数组中过滤掉非复数元素。
import numpy as np a = np.array([1, 2+6j, 5, 3.5+5j]) print (a[np.iscomplex(a)])
输出如下:
[2.0+6.j 3.5+5.j]
import numpy as np a = np.array([1, 2 + 6j, 5, 3.5 + 5j]) print(a[~np.iscomplex(a)])
输出如下:
[1.+0.j 5.+0.j]
花式索引
花式索引指的是利用整数数组进行索引。
花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。
- 如果目标是一维数组,那么索引的结果就是对应位置的元素;
-
如果目标是二维数组,那么就是对应下标的行。
花式索引跟切片不一样,它总是将数据复制到新数组中。
1、传入顺序索引数组
import numpy as np x = np.arange(32).reshape((8, 4)) print(x) print('\n') print(x[[4, 2, 1, 7]])
输出结果为:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]
[24 25 26 27]
[28 29 30 31]]
[[16 17 18 19]
[ 8 9 10 11]
[ 4 5 6 7]
[28 29 30 31]]
2、传入倒序索引数组
import numpy as np x=np.arange(32).reshape((8,4)) print (x[[-4,-2,-1,-7]])
输出结果为:
[[16 17 18 19]
[24 25 26 27]
[28 29 30 31]
[ 4 5 6 7]]
3、传入多个索引数组(要使用np.ix_)【可以理解为先取行,再调列】
import numpy as np x = np.arange(32).reshape((8, 4)) print(x) print('\n') print(x[np.ix_([1, 5, 7, 2], [0, 3, 1, 2])])
输出结果为:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]
[24 25 26 27]
[28 29 30 31]]
[[ 4 7 5 6]
[20 23 21 22]
[28 31 29 30]
[ 8 11 9 10]]