C# 语句中的各种单例模式代码
1、非线程安全(经典模式),但没有考虑线程安全,在多线程时可能会出问题,不过还从没看过出错的现象。
/// <summary> /// 单例模式的实现 /// </summary> public class Singleton { // 定义一个静态变量来保存类的实例 private static Singleton uniqueInstance; // 定义私有构造函数,使外界不能创建该类实例 private Singleton() { } /// <summary> /// 定义公有方法提供一个全局访问点,同时你也可以定义公有属性来提供全局访问点 /// </summary> /// <returns></returns> public static Singleton GetInstance() { // 如果类的实例不存在则创建,否则直接返回 if (uniqueInstance == null) { uniqueInstance = new Singleton(); } return uniqueInstance; } }
2、简单安全线程
/// <summary> /// 单例模式的实现 /// </summary> public class Singleton { // 定义一个静态变量来保存类的实例 private static Singleton uniqueInstance; // 定义一个标识确保线程同步 private static readonly object locker = new object(); // 定义私有构造函数,使外界不能创建该类实例 private Singleton() { } /// <summary> /// 定义公有方法提供一个全局访问点,同时你也可以定义公有属性来提供全局访问点 /// </summary> /// <returns></returns> public static Singleton GetInstance() { // 当第一个线程运行到这里时,此时会对locker对象 "加锁", // 当第二个线程运行该方法时,首先检测到locker对象为"加锁"状态,该线程就会挂起等待第一个线程解锁 // lock语句运行完之后(即线程运行完之后)会对该对象"解锁" lock (locker) { // 如果类的实例不存在则创建,否则直接返回 if (uniqueInstance == null) { uniqueInstance = new Singleton(); } } return uniqueInstance; } }
上面这种解决方案确实可以解决多线程的问题,但是上面代码对于每个线程都会对线程辅助对象locker加锁之后再判断实例是否存在,对于这个操作完全没有必要的,因为当第一个线程创建了该类的实例之后,后面的线程此时只需要直接判断(uniqueInstance==null)为假,此时完全没必要对线程辅助对象加锁之后再去判断,所以上面的实现方式增加了额外的开销,损失了性能,为了改进上面实现方式的缺陷,我们只需要在lock语句前面加一句(uniqueInstance==null)的判断就可以避免锁所增加的额外开销,这种实现方式我们就叫它 “双重锁定”,下面是具体实现代码:
3、尝试线程安全(双重锁定)
/// <summary> /// 单例模式的实现 /// </summary> public class Singleton { // 定义一个静态变量来保存类的实例 private static Singleton uniqueInstance; // 定义一个标识确保线程同步 private static readonly object locker = new object(); // 定义私有构造函数,使外界不能创建该类实例 private Singleton() { } /// <summary> /// 定义公有方法提供一个全局访问点,同时你也可以定义公有属性来提供全局访问点 /// </summary> /// <returns></returns> public static Singleton GetInstance() { // 当第一个线程运行到这里时,此时会对locker对象 "加锁", // 当第二个线程运行该方法时,首先检测到locker对象为"加锁"状态,该线程就会挂起等待第一个线程解锁 // lock语句运行完之后(即线程运行完之后)会对该对象"解锁" // 双重锁定只需要一句判断就可以了 if (uniqueInstance == null) { lock (locker) { // 如果类的实例不存在则创建,否则直接返回 if (uniqueInstance == null) { uniqueInstance = new Singleton(); } } } return uniqueInstance; } }
4、饿汉模式(这种模式的特点是自己主动实例)
public class EagerSingleton { //饿汉单例模式 //在类加载时就完成了初始化,所以类加载较慢,但获取对象的速度快 private static EagerSingleton instance = new EagerSingleton();//静态私有成员,已初始化 private EagerSingleton() { //私有构造函数 } public static EagerSingleton GetInstance() //静态,不用同步(类加载时已初始化,不会有多线程的问题) { return instance; } }
5、懒汉模式(类加载时不初始化)
public class LazySingleton { //懒汉式单例模式 //比较懒,在类加载时,不创建实例,因此类加载速度快,但运行时获取对象的速度慢 private static LazySingleton intance = null;//静态私用成员,没有初始化 private LazySingleton() { //私有构造函数 } public static LazySingleton GetInstance() //静态,同步,公开访问点 { if(intance == null) { intance = new LazySingleton(); } return intance; } }
6、不完全lazy,但是线程安全且不用锁。
public sealed class Singleton { private static readonly Singleton instance = new Singleton(); // 显示的static 构造函数 //没必要标记类型 - 在field初始化以前 static Singleton() { } // 定义私有构造函数,使外界不能创建该类实例 private Singleton() { } public static Singleton Instance { get { return instance; } } }
7、完全延迟实例化
public sealed class Singleton { private Singleton() { } public static Singleton Instance { get { return Nested.instance; } } private class Nested { // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit static Nested() { } internal static readonly Singleton instance = new Singleton(); } }
8、使用 .NET 4's Lazy<T> 类型
public sealed class Singleton { private static readonly Lazy<Singleton> lazy = new Lazy<Singleton>(() => new Singleton()); public static Singleton Instance { get { return lazy.Value; } } private Singleton() { } }
详细内容介绍见网址:http://csharpindepth.com/Articles/General/Singleton.aspx#unsafe