StkOvflow

STACK OVERFLOW!

一言(ヒトコト)

AcWing. 323. 战略游戏

题意简述

\(\qquad\) 给定一棵树,要求树中任意一边至少选中一点,求最少满足题意的选点数

解题思路

\(\qquad\)我们可以先画出示意图来
GR.png
橙色点表示选,灰色点表示不选。
\(\qquad\)我们可以用 \(f[i][j], j\in [0,1]\) 来表示目前在考虑第i个点,选择情况是j,当 \(j = 0\)代表不选第 \(i\) 个点,当 \(j = 1\) 代表要选。
\(\qquad\)容易得出状态转移方程:对于父节点 \(fa\) ,子节点 \(son\), 当父节点不选的时候,由于一条边至少选一点,子节点必须选,所以 \(f[fa][0]\) 只能从 \(f[son][1]\) 转移,而父节点要选的时候,不论选不选子节点都可以符合题目要求,所以有两种转移方式

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1550;
int h[N], e[N], ne[N], idx;
int f[N][2], is_son[N], n;

void add(int a, int b) 
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

void dfs(int u) 
{
    f[u][0] = 0, f[u][1] = 1;
    for (int i = h[u]; ~i; i = ne[i]) 
    {
        int j = e[i];
        dfs(j);
        f[u][0] += f[j][1];
        f[u][1] += min(f[j][0], f[j][1]);
    }
}

int main() 
{
    while (~scanf("%d", &n)) 
    {
        memset(is_son, 0, sizeof is_son);
        memset(h, -1, sizeof h), idx = 0;

        while (n -- )
        {
            int u, son, sum;
            scanf("%d:(%d) ", &u, &sum);
            while (sum -- ) 
            {
                scanf("%d", &son);
                add(u, son);
                is_son[son] = true;
            }
        }

        int root = 0;
        while (is_son[root]) root ++ ;
        dfs(root);
        printf("%d\n", min(f[root][1], f[root][0]));
    }

    return 0;
}
posted @ 2023-01-18 17:56  StkOvflow  阅读(14)  评论(0编辑  收藏  举报