kubernete 日志收集之 efk(es+Fluentd+Kibana)
简介
EFK工作示意
-
Elasticsearch
一个开源的分布式、Restful 风格的搜索和数据分析引擎,它的底层是开源库Apache Lucene。它可以被下面这样准确地形容:- 一个分布式的实时文档存储,每个字段可以被索引与搜索;
- 一个分布式实时分析搜索引擎;
- 能胜任上百个服务节点的扩展,并支持 PB 级别的结构化或者非结构化数据。
-
Fluentd
一个针对日志的收集、处理、转发系统。通过丰富的插件系统,可以收集来自于各种系统或应用的日志,转化为用户指定的格式后,转发到用户所指定的日志存储系统之中。
Fluentd 通过一组给定的数据源抓取日志数据,处理后(转换成结构化的数据格式)将它们转发给其他服务,比如 Elasticsearch、对象存储、kafka等等。Fluentd 支持超过300个日志存储和分析服务,所以在这方面是非常灵活的。主要运行步骤如下- 首先 Fluentd 从多个日志源获取数据
- 结构化并且标记这些数据
- 然后根据匹配的标签将数据发送到多个目标服务
-
Kibana
Kibana是一个开源的分析和可视化平台,设计用于和Elasticsearch一起工作。可以通过Kibana来搜索,查看,并和存储在Elasticsearch索引中的数据进行交互。也可以轻松地执行高级数据分析,并且以各种图标、表格和地图的形式可视化数据。
部署es服务
部署分析
- es生产环境是部署es集群,通常会使用statefulset进行部署;演示环境可以单点部署,生产环境必须集群部署
- 数据存储挂载主机路径
- es默认使用elasticsearch用户启动进程,es的数据目录是通过宿主机的路径挂载,因此目录权限被主机的目录权限覆盖,因此可以利用init container容器在es进程启动之前把目录的权限修改掉,注意init container要用特权模式启动。
部署 es 集群版
es 三个节点
efk/elasticsearch.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: es
version: v7.4.2
name: es
namespace: monitoring
spec:
replicas: 3
revisionHistoryLimit: 10
selector:
matchLabels:
k8s-app: es
version: v7.4.2
serviceName: elasticsearch
template:
metadata:
labels:
k8s-app: es
version: v7.4.2
spec:
nodeSelector:
log: es # 指定部署在哪个节点。需根据环境来修改
containers:
- env:
- name: NAMESPACE
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.namespace
- name: cluster.name
value: es-cluster
- name: discovery.zen.ping.unicast.hosts
value: es-0.elasticsearch,es-1.elasticsearch,es-2.elasticsearch
- name: discovery.zen.minimum_master_nodes
value: "2"
- name: network.host
value: "0.0.0.0"
- name: ES_JAVA_OPTS
value: "-Xms5g -Xmx5g"
name: es
image: mrliulei/elasticsearch:v7.4.2
ports:
- containerPort: 9200
name: db
protocol: TCP
- containerPort: 9300
name: transport
protocol: TCP
volumeMounts:
- mountPath: /usr/share/elasticsearch/data
name: elasticsearch-logging
dnsConfig:
options:
- name: single-request-reopen
initContainers:
- command:
- /sbin/sysctl
- -w
- vm.max_map_count=262144
image: alpine:3.6
imagePullPolicy: IfNotPresent
name: elasticsearch-logging-init
resources: {}
securityContext:
privileged: true
- name: fix-permissions
image: alpine:3.6
command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
securityContext:
privileged: true
volumeMounts:
- name: elasticsearch-logging
mountPath: /usr/share/elasticsearch/data
volumes:
- name: elasticsearch-logging
hostPath:
path: /esdata
---
apiVersion: v1
kind: Service
metadata:
labels:
k8s-app: es
name: elasticsearch
namespace: monitoring
spec:
ports:
- port: 9200
protocol: TCP
name: db
- port: 9300
protocol: TCP
name: transport
selector:
k8s-app: es
type: ClusterIP
# clusterIP: None
# 检查集群状态
# 登录 es 的pod 检查集群状态
kubectl -n monitoring exec -it elasticsearch-0 bash
curl http://elasticsearch:9200/_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1658396628 09:43:48 es-cluster green 3 3 10 5 0 0 0 0 - 100.0%
curl http://localhost:9200/_cat/health?v
curl http://elasticsearch:9200/_cluster/state?pretty
curl http://localhost:9200/_cluster/state?pretty
部署kibana
部署分析
- kibana需要暴漏web页面给前端使用,因此使用ingress配置域名来实现对kibana的访问
- kibana为无状态应用,直接使用Deployment来启动
- kibana需要访问es,直接利用k8s服务发现访问此地址即可,http://elasticsearch:9200
部署并验证
资源文件 efk/kibana.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: kibana
namespace: monitoring
labels:
app: kibana
spec:
selector:
matchLabels:
app: kibana
template:
metadata:
labels:
app: kibana
spec:
containers:
- name: kibana
image: mrliulei/kibana:v7.4.2
resources:
limits:
cpu: 1000m
requests:
cpu: 100m
env:
- name: ELASTICSEARCH_URL
value: elasticsearch:9200
ports:
- containerPort: 5601
---
apiVersion: v1
kind: Service
metadata:
name: kibana
namespace: monitoring
labels:
app: kibana
spec:
ports:
- port: 5601
protocol: TCP
targetPort: 5601
type: ClusterIP
selector:
app: kibana
---
# 这里我使用的是 之前 创建出来的 ingress ,所以这里的ingress我注视掉了;
# apiVersion: extensions/v1beta1
# kind: Ingress
# metadata:
# name: kibana
# namespace: monitoring
# spec:
# rules:
# - host: kibana.devops.cn
# http:
# paths:
# - path: /
# backend:
# serviceName: kibana
# servicePort: 5601
部署fluentd
fluentd 工作流程介绍:
https://docs.fluentd.org/quickstart
事件流的生命周期:https://docs.fluentd.org/quickstart/life-of-a-fluentd-event
Input -> filter1 -> ... -> filter N -> Buffer -> Output
部署分析
- fluentd为日志采集服务,kubernetes集群的每个业务节点都有日志产生,因此需要使用daemonset的模式进行部署
- 为进一步控制资源,会为daemonset指定一个选择表情,fluentd=true来做进一步过滤,只有带有此标签的节点才会部署fluentd
- 日志采集,需要采集哪些目录下的日志,采集后发送到es端,因此需要配置的内容比较多,我们选择使用configmap的方式把配置文件整个挂载出来
部署服务
配置文件,efk/fluentd-es-main.yaml
apiVersion: v1
data:
fluent.conf: |-
# This is the root config file, which only includes components of the actual configuration
#
# Do not collect fluentd's own logs to avoid infinite loops.
<match fluent.**>
@type null
</match>
@include /fluentd/etc/config.d/*.conf
kind: ConfigMap
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
name: fluentd-es-config-main
namespace: logging
配置文件,fluentd-config.yaml,注意点:
- 数据源source的配置,k8s会默认把容器的标准和错误输出日志重定向到宿主机中
- 默认集成了 kubernetes_metadata_filter 插件,来解析日志格式,得到k8s相关的元数据,raw.kubernetes
- match输出到es端的flush配置
efk/fluentd-configmap.yaml
kind: ConfigMap
apiVersion: v1
metadata:
name: fluentd-config
namespace: logging
labels:
addonmanager.kubernetes.io/mode: Reconcile
data:
system.conf: |-
<system>
root_dir /tmp/fluentd-buffers/
</system>
containers.input.conf: |-
<source>
@id fluentd-containers.log
# 日志是追加的,所以这里使用 type 类型为 tail
@type tail
# 收集日志的路径,宿主机的目录;
path /var/log/containers/*.log
pos_file /var/log/es-containers.log.pos
time_format %Y-%m-%dT%H:%M:%S.%NZ
localtime
tag raw.kubernetes.*
format json
read_from_head true
</source>
# Detect exceptions in the log output and forward them as one log entry.
# https://github.com/googlecloudplatform/fluent-plugin-detect-exceptions
<match raw.kubernetes.**>
@id raw.kubernetes
# 做了一个异常的合并,详细请查看 上边 github 链接;
@type detect_exceptions
remove_tag_prefix raw
message log
stream stream
multiline_flush_interval 5
max_bytes 500000
max_lines 1000
</match>
forward.input.conf: |-
# Takes the messages sent over TCP
<source>
@type forward
</source>
output.conf: |-
# Enriches records with Kubernetes metadata
<filter kubernetes.**>
# 引用了 kubernetes 的插件,做了日志方面的规则;
@type kubernetes_metadata
</filter>
<match **>
@id elasticsearch
# 输出到 es
@type elasticsearch
@log_level info
include_tag_key true
# 定义 es 的 svc 名称
host elasticsearch
# 定义 es 的端口
port 9200
logstash_format true
request_timeout 30s
# buffer 配置,这里也比较重要
# 调优就是调整 buffer 数值
<buffer>
# buffer 类型,选择 file ,放到文件里边,本地保存;还有一种放到内存中
@type file
# 缓存路径
path /var/log/fluentd-buffers/kubernetes.system.buffer
flush_mode interval
retry_type exponential_backoff
flush_thread_count 2
# 5s 做一次 flush
flush_interval 5s
retry_forever
retry_max_interval 30
# chunk size 为2M
chunk_limit_size 2M
# 本地最多缓存 2*8M;和5s,哪个先到,走哪个;
queue_limit_length 8
overflow_action block
</buffer>
</match>
buffer 流程图:
把数据先缓存到本地;
减轻 网络 io,不频繁发送;
daemonset定义文件,fluentd.yaml,注意点:
- 需要配置rbac规则,因为需要访问k8s api去根据日志查询元数据
- 需要将/var/log/containers/目录挂载到容器中
- 需要将fluentd的configmap中的配置文件挂载到容器内
- 想要部署fluentd的节点,需要添加fluentd=true的标签
efk/fluentd.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: fluentd-es
namespace: logging
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
- ""
resources:
- "namespaces"
- "pods"
verbs:
- "get"
- "watch"
- "list"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: fluentd-es
labels:
k8s-app: fluentd-es
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
name: fluentd-es
namespace: logging
apiGroup: ""
roleRef:
kind: ClusterRole
name: fluentd-es
apiGroup: ""
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
labels:
addonmanager.kubernetes.io/mode: Reconcile
k8s-app: fluentd-es
name: fluentd-es
namespace: logging
spec:
selector:
matchLabels:
k8s-app: fluentd-es
template:
metadata:
labels:
k8s-app: fluentd-es
spec:
containers:
- env:
- name: FLUENTD_ARGS
value: --no-supervisor -q
image: mrliulei/fluentd-es-root:v1.6.2-1.0
imagePullPolicy: IfNotPresent
name: fluentd-es
resources:
limits:
memory: 500Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- mountPath: /var/log
name: varlog
- mountPath: /var/lib/docker/containers
name: varlibdockercontainers
readOnly: true
- mountPath: /home/docker/containers
name: varlibdockercontainershome
readOnly: true
- mountPath: /fluentd/etc/config.d
name: config-volume
- mountPath: /fluentd/etc/fluent.conf
name: config-volume-main
subPath: fluent.conf
nodeSelector:
# fluentd: "true"
securityContext: {}
serviceAccount: fluentd-es
serviceAccountName: fluentd-es
volumes:
- hostPath:
path: /var/log
type: ""
name: varlog
- hostPath:
path: /var/lib/docker/containers
type: ""
name: varlibdockercontainers
- hostPath:
path: /home/docker/containers
type: ""
name: varlibdockercontainershome
- configMap:
defaultMode: 420
name: fluentd-config
name: config-volume
- configMap:
defaultMode: 420
items:
- key: fluent.conf
path: fluent.conf
name: fluentd-es-config-main
name: config-volume-main
# 创建服务
$ kubectl create -f fluentd-es-config-main.yaml
$ kubectl create -f fluentd-configmap.yaml
$ kubectl create -f fluentd.yaml
EFK功能验证
验证思路
k8s-slave1和slave2中启动服务,同时往标准输出中打印测试日志,到kibana中查看是否可以收集
创建测试容器
apiVersion: v1
kind: Pod
metadata:
name: counter
spec:
nodeSelector:
# fluentd: "true"
containers:
- name: count
image: alpine:3.6
args: [/bin/sh, -c,
'i=0; while true; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done']
$ kubectl get po
NAME READY STATUS RESTARTS AGE
counter 1/1 Running 0 6s
配置kibana
登录kibana界面,按照截图的顺序操作:
也可以通过其他元数据来过滤日志数据,比如可以单击任何日志条目以查看其他元数据,如容器名称,Kubernetes 节点,命名空间等,比如kubernetes.pod_name : counter
到这里,我们就在 Kubernetes 集群上成功部署了 EFK ,要了解如何使用 Kibana 进行日志数据分析,可以参考 Kibana 用户指南文档:https://www.elastic.co/guide/en/kibana/current/index.html
本文来自博客园, 作者:Star-Hitian, 转载请注明原文链接:https://www.cnblogs.com/Star-Haitian/p/16502875.html