Kubernetes服务访问之 Service
单 pod 存在如下两个问题:
- Pod IP仅仅是集群内可见的虚拟IP,外部无法访问。
- Pod IP会随着Pod的销毁而消失,当ReplicaSet对Pod进行动态伸缩时,Pod IP可能随时随地都会变化,这样对于我们访问这个服务带来了难度。
Service 负载均衡之Cluster IP
service是一组pod的服务抽象,相当于一组pod的LB,负责将请求分发给对应的pod。service会为这个LB提供一个IP,一般称为cluster IP 。使用Service对象,通过selector进行标签选择,找到对应的Pod:
myblog/deployment/svc-myblog.yaml
apiVersion: v1
kind: Service
metadata:
name: myblog
namespace: demo
spec:
ports:
- port: 80
protocol: TCP
targetPort: 8002
selector:
app: myblog
type: ClusterIP
操作演示:
## 别名
$ alias kd='kubectl -n demo'
## 创建服务
$ kd create -f svc-myblog.yaml
$ kd get po --show-labels
NAME READY STATUS RESTARTS AGE LABELS
myblog-5c97d79cdb-jn7km 1/1 Running 0 6m5s app=myblog
mysql-85f4f65f99-w6jkj 1/1 Running 0 176m app=mysql
$ kd get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
myblog ClusterIP 10.99.174.93 <none> 80/TCP 7m50s
$ kd describe svc myblog
Name: myblog
Namespace: demo
Labels: <none>
Annotations: <none>
Selector: app=myblog
Type: ClusterIP
IP: 10.99.174.93
Port: <unset> 80/TCP
TargetPort: 8002/TCP
Endpoints: 10.244.0.68:8002
Session Affinity: None
Events: <none>
## 扩容myblog服务
$ kd scale deploy myblog --replicas=2
deployment.extensions/myblog scaled
## 再次查看
$ kd describe svc myblog
Name: myblog
Namespace: demo
Labels: <none>
Annotations: <none>
Selector: app=myblog
Type: ClusterIP
IP: 10.99.174.93
Port: <unset> 80/TCP
TargetPort: 8002/TCP
Endpoints: 10.244.0.68:8002,10.244.1.158:8002
Session Affinity: None
Events: <none>
Service与Pod如何关联:
service对象创建的同时,会创建同名的endpoints对象,若服务设置了readinessProbe, 当readinessProbe检测失败时,endpoints列表中会剔除掉对应的pod_ip,这样流量就不会分发到健康检测失败的Pod中
$ kd get endpoints myblog
NAME ENDPOINTS AGE
myblog 10.244.0.68:8002,10.244.1.158:8002 7m
Service Cluster-IP如何访问:
$ kd get svc myblog
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
myblog ClusterIP 10.99.174.93 <none> 80/TCP 13m
$ curl 10.99.174.93/blog/index/
为mysql服务创建service:
apiVersion: v1
kind: Service
metadata:
name: mysql
namespace: demo
spec:
ports:
- port: 3306
protocol: TCP
targetPort: 3306
selector:
app: mysql
type: ClusterIP
访问mysql:
$ kd get svc mysql
mysql ClusterIP 10.108.214.84 <none> 3306/TCP 3s
$ curl 10.108.214.84:3306
目前使用hostNetwork部署,通过宿主机ip+port访问,弊端:
- 服务使用hostNetwork,使得宿主机的端口大量暴漏,存在安全隐患
- 容易引发端口冲突
服务均属于k8s集群,尽可能使用k8s的网络访问,因此可以对目前myblog访问mysql的方式做改造:
- 为mysql创建一个固定clusterIp的Service,把clusterIp配置在myblog的环境变量中
- 利用集群服务发现的能力,组件之间通过service name来访问
服务发现
在k8s集群中,组件之间可以通过定义的Service名称实现通信。
演示服务发现:
## 演示思路:在myblog的容器中直接通过service名称访问服务,观察是否可以访问通
# 先查看服务
$ kd get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
myblog ClusterIP 10.99.174.93 <none> 80/TCP 59m
mysql ClusterIP 10.108.214.84 <none> 3306/TCP 35m
# 进入myblog容器
$ kd exec -ti myblog-5c97d79cdb-j485f bash
[root@myblog-5c97d79cdb-j485f myblog]# curl mysql:3306
5.7.29 )→ (mysql_native_password ot packets out of order
[root@myblog-5c97d79cdb-j485f myblog]# curl myblog/blog/index/
我的博客列表
虽然podip和clusterip都不固定,但是service name是固定的,而且具有完全的跨集群可移植性,因此组件之间调用的同时,完全可以通过service name去通信,这样避免了大量的ip维护成本,使得服务的yaml模板更加简单。因此可以对mysql和myblog的部署进行优化改造:
- mysql可以去掉hostNetwork部署,使得服务只暴漏在k8s集群内部网络
- configMap中数据库地址可以换成Service名称,这样跨环境的时候,配置内容基本上可以保持不用变化
修改deploy-mysql.yaml
spec:
hostNetwork: true # 去掉此行
volumes:
- name: mysql-data
hostPath:
path: /opt/mysql/data
修改configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: myblog
namespace: demo
data:
MYSQL_HOST: "mysql" # 此处替换为mysql
MYSQL_PORT: "3306"
应用修改:
$ kubectl apply -f configmap.yaml
$ kubectl apply -f deploy-mysql.yaml
## 重建pod
$ kubectl -n demo delete po mysql-7f747644b8-6npzn
#去掉taint
$ kubectl taint node k8s-slave1 smoke-
$ kubectl taint node k8s-slave2 drunk-
## myblog不用动,会自动因健康检测不过而重启
服务发现实现:
CoreDNS
是一个Go
语言实现的链式插件DNS服务端
,是CNCF成员,是一个高性能、易扩展的DNS服务端
。
$ kubectl -n kube-system get po -o wide|grep dns
coredns-d4475785-2w4hk 1/1 Running 0 4d22h 10.244.0.64
coredns-d4475785-s49hq 1/1 Running 0 4d22h 10.244.0.65
# 查看myblog的pod解析配置
$ kubectl -n demo exec -ti myblog-5c97d79cdb-j485f bash
[root@myblog-5c97d79cdb-j485f myblog]# cat /etc/resolv.conf
nameserver 10.96.0.10
search demo.svc.cluster.local svc.cluster.local cluster.local
options ndots:5
# search 行是 dns 的搜索域;如直接ping mysql ==> ping mysql.demo.svc.cluster.local
## 10.96.0.10 从哪来
$ kubectl -n kube-system get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/TCP 51d
## 启动pod的时候,会把kube-dns服务的cluster-ip地址注入到pod的resolve解析配置中,同时添加对应的namespace的search域。 因此跨namespace通过service name访问的话,需要添加对应的namespace名称,
# service_name.namespace_name
# 示例域名:gitea-http.monitoring.svc.cluster.local;ns = monitoring; svc = gitea-http
$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 26h
Service负载均衡之NodePort
cluster-ip为虚拟地址,只能在k8s集群内部进行访问,集群外部如果访问内部服务,实现方式之一为使用NodePort方式。NodePort会默认在 30000-32767 ,不指定的会随机使用其中一个。
myblog/deployment/svc-myblog-nodeport.yaml
apiVersion: v1
kind: Service
metadata:
name: myblog-np
namespace: demo
spec:
ports:
- port: 80
protocol: TCP
targetPort: 8002
selector:
app: myblog
type: NodePort
查看并访问服务:
$ kd create -f svc-myblog-nodeport.yaml
service/myblog-np created
$ kd get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
myblog ClusterIP 10.99.174.93 <none> 80/TCP 102m
myblog-np NodePort 10.105.228.101 <none> 80:30647/TCP 4s
mysql ClusterIP 10.108.214.84 <none> 3306/TCP 77m
#集群内每个节点的NodePort端口都会进行监听
$ curl 192.168.136.128:30647/blog/index/
我的博客列表
$ curl 192.168.136.131:30647/blog/index/
我的博客列表
## 浏览器访问
思考:
-
NodePort的端口监听如何转发到对应的Pod服务?
-
CLUSTER-IP为虚拟IP,集群内如何通过虚拟IP访问到具体的Pod服务?
kube-proxy
运行在每个节点上,监听 API Server 中服务对象的变化,再通过创建流量路由规则来实现网络的转发。参照
有三种模式:
- User space, 让 Kube-Proxy 在用户空间监听一个端口,所有的 Service 都转发到这个端口,然后 Kube-Proxy 在内部应用层对其进行转发 , 所有报文都走一遍用户态,性能不高,k8s v1.2版本后废弃。
- Iptables, 当前默认模式,完全由 IPtables 来实现, 通过各个node节点上的iptables规则来实现service的负载均衡,但是随着service数量的增大,iptables模式由于线性查找匹配、全量更新等特点,其性能会显著下降。
- IPVS, 与iptables同样基于Netfilter,但是采用的hash表,因此当service数量达到一定规模时,hash查表的速度优势就会显现出来,从而提高service的服务性能。 k8s 1.8版本开始引入,1.11版本开始稳定,需要开启宿主机的ipvs模块。
IPtables模式示意图:
$ iptables-save |grep -v myblog-np|grep "demo/myblog"
-A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.99.174.93/32 -p tcp -m comment --comment "demo/myblog: cluster IP" -m tcp --dport 80 -j KUBE-MARK-MASQ
-A KUBE-SERVICES -d 10.99.174.93/32 -p tcp -m comment --comment "demo/myblog: cluster IP" -m tcp --dport 80 -j KUBE-SVC-WQNGJ7YFZKCTKPZK
$ iptables-save |grep KUBE-SVC-WQNGJ7YFZKCTKPZK
-A KUBE-SVC-WQNGJ7YFZKCTKPZK -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-GB5GNOM5CZH7ICXZ
-A KUBE-SVC-WQNGJ7YFZKCTKPZK -j KUBE-SEP-7GWC3FN2JI5KLE47
$ iptables-save |grep KUBE-SEP-GB5GNOM5CZH7ICXZ
-A KUBE-SEP-GB5GNOM5CZH7ICXZ -p tcp -m tcp -j DNAT --to-destination 10.244.1.158:8002
$ iptables-save |grep KUBE-SEP-7GWC3FN2JI5KLE47
-A KUBE-SEP-7GWC3FN2JI5KLE47 -p tcp -m tcp -j DNAT --to-destination 10.244.1.159:8002
Kubernetes服务访问之Ingress
对于Kubernetes的Service,无论是Cluster-Ip和NodePort均是四层的负载,集群内的服务如何实现七层的负载均衡,这就需要借助于Ingress,Ingress控制器的实现方式有很多,比如nginx, Contour, Haproxy, trafik, Istio,我们以nginx的实现为例做演示。
Ingress-nginx是7层的负载均衡器 ,负责统一管理外部对k8s cluster中service的请求。主要包含:
- ingress-nginx-controller:根据用户编写的ingress规则(创建的ingress的yaml文件),动态的去更改nginx服务的配置文件,并且reload重载使其生效(是自动化的,通过lua脚本来实现);
- ingress资源对象:将Nginx的配置抽象成一个Ingress对象,每添加一个新的Service资源对象只需写一个新的Ingress规则的yaml文件即可(或修改已存在的ingress规则的yaml文件)
示意图:
实现逻辑
1)ingress controller通过和kubernetes api交互,动态的去感知集群中ingress规则变化
2)然后读取ingress规则(规则就是写明了哪个域名对应哪个service),按照自定义的规则,生成一段nginx配置
3)再写到nginx-ingress-controller的pod里,这个Ingress controller的pod里运行着一个Nginx服务,控制器把生成的nginx配置写入/etc/nginx.conf文件中
4)然后reload一下使配置生效。以此达到域名分别配置和动态更新的问题。
安装
$ wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml
## 或者使用myblog/deployment/ingress/mandatory.yaml
## 修改部署节点
$ grep -n5 nodeSelector mandatory.yaml
212- spec:
213- hostNetwork: true #添加为host模式
214- # wait up to five minutes for the drain of connections
215- terminationGracePeriodSeconds: 300
216- serviceAccountName: nginx-ingress-serviceaccount
217: nodeSelector:
218- ingress: "true" #替换此处,来决定将ingress部署在哪些机器
219- containers:
220- - name: nginx-ingress-controller
221- image: quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.30.0
222- args:
使用示例:myblog/deployment/ingress.yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: myblog
namespace: demo
spec:
rules:
- host: myblog.devops.cn
http:
paths:
- path: /
backend:
serviceName: myblog
servicePort: 80
ingress-nginx动态生成upstream配置:
...
server_name myblog.devops.cn ;
listen 80 ;
listen [::]:80 ;
listen 443 ssl http2 ;
listen [::]:443 ssl http2 ;
set $proxy_upstream_name "-";
ssl_certificate_by_lua_block {
certificate.call()
}
location / {
set $namespace "demo";
set $ingress_name "myblog";
...
访问
域名解析服务,将 myblog.devops.cn
解析到ingress的地址上。ingress是支持多副本的,高可用的情况下,生产的配置是使用lb服务(内网F5设备,公网elb、slb、clb,解析到各ingress的机器,如何域名指向lb地址)
本机,添加如下hosts记录来演示效果。
192.168.136.128 myblog.devops.cn
然后,访问 http://myblog.devops.cn/blog/index/
HTTPS访问:
#自签名证书
$ openssl req -x509 -nodes -days 2920 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/CN=*.devops.cn/O=ingress-nginx"
# 证书信息保存到secret对象中,ingress-nginx会读取secret对象解析出证书加载到nginx配置中
$ kubectl -n demo create secret tls https-secret --key tls.key --cert tls.crt
secret/https-secret created
修改yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: myblog-tls
namespace: demo
spec:
rules:
- host: myblog.devops.cn
http:
paths:
- path: /
backend:
serviceName: myblog
servicePort: 80
tls:
- hosts:
- myblog.devops.cn
secretName: https-secret
本文来自博客园, 作者:Star-Hitian, 转载请注明原文链接:https://www.cnblogs.com/Star-Haitian/p/16497463.html