POJ-3255-Roadblocks(次短路的另一种求法)
Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.
The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.
The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).
Input
Lines 2.. R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)
Output
Sample Input
4 4 1 2 100 2 4 200 2 3 250 3 4 100
Sample Output
450
Hint
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<queue> #include<stack> #include<set> #include<map> #include<vector> #include<cmath> const int maxn=1e5+5; typedef long long ll; using namespace std; struct node { int pos,w; node(int x,int y) { pos=x; w=y; } bool friend operator<(node x,node y ) { return x.w>y.w; } }; struct edge { int u,v; ll cost; int nxt; }Edge[maxn<<1]; int cnt; ll dis[5005],dis2[5005]; int head[5005],vis[5005]; void Add(int u,int v,ll w) { Edge[cnt].u=u; Edge[cnt].v=v; Edge[cnt].cost=w; Edge[cnt].nxt=head[u]; head[u]=cnt++; } void Dijkstra(int u) { dis[u]=0; priority_queue<node>q; q.push(node(u,0)); while(!q.empty()) { node now=q.top(); q.pop(); if(vis[now.pos]) { continue; } vis[now.pos]=1; for(int t=head[now.pos];t!=-1;t=Edge[t].nxt) { if(dis[now.pos]+Edge[t].cost<dis[Edge[t].v]) { dis[Edge[t].v]=dis[now.pos]+Edge[t].cost; q.push(node(Edge[t].v,dis[Edge[t].v])); } } } return ; } int main() { int n,m; scanf("%d%d",&n,&m); memset(vis,0,sizeof(vis)); memset(head,-1,sizeof(head)); memset(dis,0x3f3f3f3f,sizeof(dis)); cnt=0; int u,v; ll w; for(int t=0;t<m;t++) { scanf("%d%d%lld",&u,&v,&w); Add(u,v,w); Add(v,u,w); } Dijkstra(1); for(int t=1;t<=n;t++) { dis2[t]=dis[t]; } memset(dis,0x3f3f3f3f,sizeof(dis)); memset(vis,0,sizeof(vis)); Dijkstra(n); int ans=0x3f3f3f3f; for(int t=0;t<cnt;t++) { if(dis[Edge[t].u]+dis2[Edge[t].v]+Edge[t].cost<ans&&(dis[Edge[t].u]+dis2[Edge[t].v]+Edge[t].cost)!=dis2[n]) { ans=dis[Edge[t].u]+dis2[Edge[t].v]+Edge[t].cost; } } printf("%d\n",ans); system("pause"); return 0; }
-------------------------------------------
个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!
如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!
万水千山总是情,打赏一分行不行,所以如果你心情还比较高兴,也是可以扫码打赏博主,哈哈哈(っ•̀ω•́)っ✎⁾⁾!