Infinite Inversions(树状数组+离散化)
思路及代码参考:https://blog.csdn.net/u014800748/article/details/45420085
There is an infinite sequence consisting of all positive integers in the increasing order: p = {1, 2, 3, ...}. We performed n swap operations with this sequence. A swap(a, b) is an operation of swapping the elements of the sequence on positions aand b. Your task is to find the number of inversions in the resulting sequence, i.e. the number of such index pairs (i, j), that i < j and pi > pj.
Input
The first line contains a single integer n (1 ≤ n ≤ 105) — the number of swapoperations applied to the sequence.
Each of the next n lines contains two integers ai and bi (1 ≤ ai, bi ≤ 109, ai ≠ bi) — the arguments of the swap operation.
Output
Print a single integer — the number of inversions in the resulting sequence.
Examples
2
4 2
1 4
4
3
1 6
3 4
2 5
15
Note
In the first sample the sequence is being modified as follows: . It has 4 inversions formed by index pairs (1, 4), (2, 3), (2, 4) and (3, 4).
代码:
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<queue> #include<stack> #include<set> #include<vector> #include<cmath> const int maxn=2e5+5; typedef long long ll; using namespace std; ll s[maxn],sum[maxn]; int ss[maxn]; int a[maxn],b[maxn],pos[maxn]; int lowbit(int x) { return x&(-x); } int n; void update(int pos,int ad) { while(pos<=maxn) { s[pos]+=ad; pos+=lowbit(pos); } } ll getnum(int pos) { ll res=0; while(pos>0) { res+=s[pos]; pos-=lowbit(pos); } return res; } int main() { int n; while (~scanf("%d", &n)) { for (int i = 1; i <= n; i++) { scanf("%d%d", &a[i], &b[i]); ss[i] = a[i]; ss[i + n] = b[i]; pos[i] = i; pos[i + n] = i + n; } sort(ss + 1, ss + 2 * n + 1); ss[0] = 0; int cnt = 0; for (int i = 1; i <= 2 * n;i++) if (i == 1 || ss[i] != ss[i - 1]) ss[++cnt] = ss[i]; sum[0] = 0; for (int i = 1; i <= cnt; i++) sum[i] = sum[i - 1] + ss[i] - ss[i - 1] - 1; for (int i = 1; i <= n; i++) { int aa = lower_bound(ss + 1, ss + cnt + 1, a[i]) - ss; int bb = lower_bound(ss + 1,ss + cnt + 1, b[i]) - ss; swap(pos[aa], pos[bb]); } memset(s, 0, sizeof(s)); ll ans = 0; for (int i = cnt; i; i--) { ans += getnum(pos[i]); ans += abs(sum[i]-sum[pos[i]]); update(pos[i], 1); } printf("%lld\n", ans); } return 0; }
-------------------------------------------
个性签名:独学而无友,则孤陋而寡闻。做一个灵魂有趣的人!
如果觉得这篇文章对你有小小的帮助的话,记得在右下角点个“推荐”哦,博主在此感谢!
万水千山总是情,打赏一分行不行,所以如果你心情还比较高兴,也是可以扫码打赏博主,哈哈哈(っ•̀ω•́)っ✎⁾⁾!