【deep learning】入门总结1-----深度学习概述

好久好久没有写博客了,由于做的事情越来越多,这个学期的信息量好大,都不想整理,不想总结了,但是不总结是不对的,这些知识是吃不下的。从今天开始,还是把纸上的写下来的资料总结一下吧。4月17日,我胡汉三又回来了~

关于深度学习的入门学习,我主要是通过看红色的石头的吴恩达深度学习专项课程博客专栏学习的深度学习入门,外加阅读了XXX

关于《吴恩达深度学习专项课程》,概述部分提出了这么几个问题:

  what is neuron?

   Andrew Ng 使用了ReLu函数(Rectified Linear Unit)用于拟合(fitting)房价和房屋大小的关系,提出:ReLu函数就是一个neuron

 

 

  what is neuron network? (NN)

  下图从左到右分别是input layer hidden layer 和 output layer

 

   Why does deep learning take off?

   在数据量不大的时候,例如上图中左边区域,深度学习模型不一定优于传统机器学习算法,性能差异可能并不大。随着数据量的增多,DL表现优异,上限高

   之所以DL表现的这么好是因为Data,computation,algorithm。数据量增大,GPU计算力增强,以及算法的大大提升。

  

 

 

 

  

posted @   SsoZh  阅读(241)  评论(0编辑  收藏  举报
编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
历史上的今天:
2018-04-17 CHAPTER 1 ----- a tour of computer sysytems(3)
点击右上角即可分享
微信分享提示