U179915 关于分级火箭的一点理想化的计算
本题是一道疯狂推式子的玄学复杂度sb题。
解题思路
1.数学部分
首先假定已经将火箭分成了 级,记使用了 个分级器。记各级的开始时间点为:
其中 总的开始, 为总的结束。称时间段 为第 阶段, 。
为了方便,记第 阶段除燃料之外的质量总共为:
设火箭该阶段燃料质量关于时间的函数为 ,根据“火箭瞬时的燃料消耗速度与火箭的瞬时总质量成正比”,以及每一阶段结束时剩余的燃料质量,列出方程:
解得:
考虑第 阶段开头,有:
带入化简可得:
累加,得到:
2.代码部分
根据以上推导,我们列出了关于未知数 的方程:
由于题目仅要求整数级别的复杂度,我们可以通过二分(通过“简单“的求导就能证明其单调性)近似求解 的值,每次通过循环计算出上式中等号左侧的值,若不小于右侧则合法。其复杂度为 。
然后我们需要对 进行遍历。若采取直接遍历的方法,总复杂度为 ,会TLE
。注意到 关于 的函数先减后增,于是可以采用爬山算法,随机地进行求解。
代码
#include<iostream>
#include<cmath>
using namespace std;
typedef unsigned long long ull;
int M0, M1, M2, T, eta; //五个参数
const int steps = 5, step[steps] = { 10000,1000,100,10,1 }, maxn = 100000;
//步数大小和最大层数,这会影响算法正确性,请“适当”地自行选择
constexpr double Mx(int n, int k) {
return (double)(n + 1 - k) * M1 / (n + 1) + M0 + (double)(n - k) * M2;
} //第k阶段除燃料之外的质量
bool check(int n, ull m) {
double sum = 0;
for (int k = 0; k <= n; k++)
sum += log(Mx(n, k) + (double)(n + 1 - k) / (n + 1) * m)
- log(Mx(n, k) + (double)(n - k) / (n + 1) * m);
if (sum < (double)T / eta) return false;
return true;
} //检测合法性
int main() {
cin >> M1 >> M2 >> eta >> M0 >> T;
int ansn = 0;
ull ansm = (ull)ceil((exp((double)T / eta) - 1) * ((double)M0 + M1));
for (int i = 0; i < steps; i++) { //枚举步数大小
for (int n = ansn + step[i]; n < maxn; n += step[i]) {
ull lm = (ull)floor(Mx(n, 0) * eta), rm = ansm;
if (lm > rm || !check(n, rm)) break;
while (lm < rm) {
ull mid = (lm + rm) / 2;
if (check(n, mid)) rm = mid;
else lm = mid + 1;
} //易懂的二分答案
if (rm < ansm) { //为使n尽量小,正向时是小于
ansm = rm; ansn = n;
}
} //正向爬山
for (int n = ansn - step[i]; n < maxn; n -= step[i]) {
ull lm = (ull)floor(Mx(n, 0) * eta), rm = ansm;
if (lm > rm || !check(n, rm)) break;
while (lm < rm) {
ull mid = (lm + rm) / 2;
if (check(n, mid)) rm = mid;
else lm = mid + 1;
}
if (rm <= ansm) { //为使n尽量小,反向时是小于等于
ansm = rm; ansn = n;
}
} //反向爬山
}
cout << ansn << endl;
return 0;
}
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 没有源码,如何修改代码逻辑?
· PowerShell开发游戏 · 打蜜蜂
· 在鹅厂做java开发是什么体验
· WPF到Web的无缝过渡:英雄联盟客户端的OpenSilver迁移实战