之前在 Lookup join mysql 的时候,因为只能使用 rowke 做关联键,所以一直想写个带缓存的 udtf,通过 udtf 的方式关联非主键的字段,同时由于 udf 里面加了缓存,所以用起来和 lookup join 差不多(关于 udf 的内容之前的博客已经写过了)。

最近实现了几个自定义的 TableSource,想着也实现一个 Lookup 的 Table Source,最近这段时间,花了点时间,自己写 + 从 Flink 源码里面抄,实现了一套自定义的 mysq Table Source 和 Lookup Source(随后可能还会有 Hbase 的 Lookup Source,或许也会写个 kudu 的)。

“参考” Flink 的 JdbcRowDataLookupFunction(大部分内容都是抄过来的,少造轮子,构造了和 Flink 源码里面一样的参数,主要 eval 方法就直接抄 Flink 源码了)

DynamicTableSource 有两种实现: ScanTableSource 和 LookupTableSource,需要先实现 ScanTableSource, LookupTableSource, 分别实现对应的的方法。

说明: LookupTableSource 也是一种 Table Source,不是 ScanTableSouce 的一部分。ScanTableSource 和 LookupTableSource 的选择,是在优化 SQL 的时候确定的。

核心代码:


override def translate(
  modifyOperations: util.List[ModifyOperation]): util.List[Transformation[_]] = {
validateAndOverrideConfiguration()
if (modifyOperations.isEmpty) {
  return List.empty[Transformation[_]]
}
val relNodes = modifyOperations.map(translateToRel)
// 优化 SQL
val optimizedRelNodes = optimize(relNodes)
val execGraph = translateToExecNodeGraph(optimizedRelNodes)
// 后续解析流程和 Stream Api 一样,用 transformations 生成 StreamGraph,再生成 JobGraph
val transformations = translateToPlan(execGraph)
cleanupInternalConfigurations()
transformations
}

执行 optimize 之前:

执行 optimize 之后:

实现

MysqlDynamicTableSource 实现 LookupTableSource 接口,实现对应的 getLookupRuntimeProvider 方法


@Override
public LookupRuntimeProvider getLookupRuntimeProvider(LookupContext context) {
    if (lookupOption == null) {
        lookupOption = new MysqlLookupOption.Builder()
                .setCacheMaxSize(options.get(MysqlOption.CACHE_MAX_SIZE))
                .setCacheExpireMs(options.get(MysqlOption.CACHE_EXPIRE_MS))
                .setMaxRetryTimes(options.get(MysqlOption.MAX_RETRY_TIMES))
                .build();
    }
    // 凑 MysqlRowDataLookUpFunction 需要的参数
    final RowTypeInfo rowTypeInfo = (RowTypeInfo) fromDataTypeToLegacyInfo(producedDataType);

    String[] fieldNames = rowTypeInfo.getFieldNames();
    TypeInformation[] fieldTypes = rowTypeInfo.getFieldTypes();

    int[] lookupKeysIndex = context.getKeys()[0];
    int keyCount = lookupKeysIndex.length;
    String[] keyNames = new String[keyCount];
    for (int i = 0; i < keyCount; i++) {
        keyNames[i] = fieldNames[lookupKeysIndex[i]];
    }
    final RowType rowType = (RowType) physicalSchema.toRowDataType().getLogicalType();

    // new MysqlRowDataLookUpFunction
    MysqlRowDataLookUpFunction lookUpFunction
            = new MysqlRowDataLookUpFunction(url, username, password, table, fieldNames, keyNames, fieldTypes, lookupOption, rowType);

    return TableFunctionProvider.of(lookUpFunction);
}

MysqlRowDataLookUpFunction 实现 TableFunction,核心代码如下


@Override
public void open(FunctionContext context) {
    try {
        establishConnectionAndStatement();
        // cache, if not set "mysql.lookup.cache.max.size" and "mysql.lookup.cache.expire.ms", do not use cache
        this.cache =
                cacheMaxSize == -1 || cacheExpireMs == -1
                        ? null
                        : CacheBuilder.newBuilder()
                        .expireAfterWrite(cacheExpireMs, TimeUnit.MILLISECONDS)
                        .maximumSize(cacheMaxSize)
                        .build();
    } catch (SQLException sqe) {
        throw new IllegalArgumentException("open() failed.", sqe);
    }
}


/**
 * method eval lookup key,
 * search cache first
 * if cache not exit, query third system
 *
 * @param keys query parameter
 */
public void eval(Object... keys) {
    RowData keyRow = GenericRowData.of(keys);
    // get row from cache
    if (cache != null) {
        List<RowData> cachedRows = cache.getIfPresent(keyRow);
        if (cachedRows != null) {
            for (RowData cachedRow : cachedRows) {
                collect(cachedRow);
            }
            return;
        }
    }
    // query mysql, retry maxRetryTimes count
    for (int retry = 0; retry <= maxRetryTimes; retry++) {
        try {
            statement.clearParameters();
            statement = lookupKeyRowConverter.toExternal(keyRow, statement);
            try (ResultSet resultSet = statement.executeQuery()) {
                if (cache == null) {
                    // if cache is null, loop to collect result
                    while (resultSet.next()) {
                        collect(jdbcRowConverter.toInternal(resultSet));
                    }
                } else {
                    // cache is not null, loop to collect result, and save result to cache
                    ArrayList<RowData> rows = new ArrayList<>();
                    while (resultSet.next()) {
                        RowData row = jdbcRowConverter.toInternal(resultSet);
                        rows.add(row);
                        collect(row);
                    }
                    rows.trimToSize();
                    cache.put(keyRow, rows);
                }
            }
        }
    }
}


  • 构造方法获取传入的参数
  • open 方法初始化 mysql 连接,创建缓存对象
  • eval 方法是执行查询的地方,先查缓存,再查 mysql

从整体来看,自定义Source,需要三个类: MysqlDynamicTableFactory -> MysqlDynamicTableSource -> MysqlRowDataLookUpFunction,Flink 通过 SPI 从 META-INF.services/org.apache.flink.table.factories.Factory 中注册 TableFactory

代码比较类似就不贴全部代码了,完整代码参考: GitHub

测试

建表语句


create temporary table mysql_behavior_conf(
   id int
  ,code STRING
  ,`value` STRING
  ,update_time TIMESTAMP(3)
)WITH(
 'connector' = 'cust-mysql'
 ,'mysql.url' = 'jdbc:mysql://localhost:3306/venn?useUnicode=true&characterEncoding=utf8&useSSL=false&allowPublicKeyRetrieval=true'
 ,'mysql.username' = 'root'
 ,'mysql.password' = '123456'
 ,'mysql.database' = 'venn'
 ,'mysql.table' = 'lookup_join_config'
 ,'mysql.lookup.cache.max.size' = '1'
 ,'mysql.lookup.cache.expire.ms' = '600000'
 ,'mysql.lookup.max.retry.times' = '3'
 ,'mysql.timeout' = '10'
)
;

insert


INSERT INTO kakfa_join_mysql_demo(user_id, item_id, category_id, behavior, behavior_map, ts)
SELECT a.user_id, a.item_id, a.category_id, a.behavior, c.`value`, a.ts
FROM user_log a
  left join mysql_behavior_conf FOR SYSTEM_TIME AS OF a.process_time AS c
  ON a.behavior = c.code
where a.behavior is not null;

任务执行图

mysql 表数据:

输出结果:

+I[user_id_1, abc, category_id_1, 1, 1_value, 2021-10-18T14:59:04.111]
+I[user_id_2, abc, category_id_2, 2, 2_value, 2021-10-18T14:59:04.112]
+I[user_id_3, abc, category_id_3, 3, null, 2021-10-18T14:59:05.113]
+I[user_id_4, abc, category_id_4, 4, null, 2021-10-18T14:59:05.113]
+I[user_id_5, abc, category_id_5, 5, null, 2021-10-18T14:59:06.115]
+I[user_id_6, abc, category_id_6, 6, null, 2021-10-18T14:59:06.116]
+I[user_id_7, abc, category_id_7, 7, null, 2021-10-18T14:59:07.118]

从缓存获取数据:

欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文

posted on 2021-10-18 15:09  Flink菜鸟  阅读(1923)  评论(0编辑  收藏  举报