--------20190905更新-------
沙雕了,可以用 JSONKeyValueDeserializationSchema,接收ObjectNode的数据,如果有key,会放在ObjectNode中
if (record.key() != null) { node.set("key", mapper.readValue(record.key(), JsonNode.class)); } if (record.value() != null) { node.set("value", mapper.readValue(record.value(), JsonNode.class)); } if (includeMetadata) { node.putObject("metadata") .put("offset", record.offset()) .put("topic", record.topic()) .put("partition", record.partition()); }
-------------------
Flink 的 FlinkKafkaConsumer、FlinkKafkaProducer,在消费、生成kafka 数据的时候,不能指定key,又时候,我们又需要这个key。
val kafkaSource = new FlinkKafkaConsumer[ObjectNode]("kafka_demo", new JsonNodeDeserializationSchema(), Common.getProp) val sink = new FlinkKafkaProducer[String]("kafka_demo_out", new SimpleStringSchema(), Common.getProp) sink.setWriteTimestampToKafka(true) env.addSource(kafkaSource) .map(node => { node.put("token", System.currentTimeMillis()) node.toString }) .addSink(sink)
下面通过flink 的自定source、sink 实现,消费、生成kafka 数据的时候,获取数据的key ,和输出不同key的数据
思路: 使用kafka 原生的api,KafkaConsuemr和KafkaProducer 消费、生产kafka的数据,就可以获取到key值
kafka 生产者:
object KafkaKeyMaker { val topic = "kafka_key" def main(args: Array[String]): Unit = { val producer = new KafkaProducer[String, String](Common.getProp) while (true) { val map = Map("user"->"venn", "name"->"venn","pass"->System.currentTimeMillis()) val jsonObject: JSONObject = new JSONObject(map) println(jsonObject.toString())
// key : msgKey + long val msg = new ProducerRecord[String, String](topic, "msgKey" + System.currentTimeMillis(), jsonObject.toString()) producer.send(msg) producer.flush() Thread.sleep(3000) } } }
kafka 消费者:
object KafkaKeyReceive{ val topic = "kafka_key" def main(args: Array[String]): Unit = { val consumer = new KafkaConsumer[String, String](Common.getProp) consumer.subscribe(util.Arrays.asList(topic + "_out")) while (true) { val records = consumer.poll(500) val tmp = records.iterator() while (tmp.hasNext){ val record = tmp.next() val key = record.key() val value = record.value() println("receive -> key : " + key + ", value : " + value) } Thread.sleep(3000) } } }
flink 代码,自定义source、sink
import com.venn.common.Common import org.apache.flink.api.scala._ import org.apache.flink.configuration.Configuration import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction} import org.apache.flink.streaming.api.functions.source.{RichSourceFunction, SourceFunction} import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.kafka.clients.consumer.KafkaConsumer import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord} import scala.collection.JavaConversions._ /** * Created by venn on 19-4-26. */ object KafkaSourceKey { def main(args: Array[String]): Unit = { // environment val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment env.addSource(new RichSourceFunction[String] { // kafka consumer 对象 var consumer: KafkaConsumer[String, String] = null // 初始化方法 override def open(parameters: Configuration): Unit = { consumer = new KafkaConsumer[String, String](Common.getProp) // 订阅topic val list = List("kafka_key") consumer.subscribe(list) } // 执行方法,拉取数据,获取到的数据,会放到source 的缓冲区 override def run(ctx: SourceFunction.SourceContext[String]): Unit = { println("run") while (true) { val records = consumer.poll(500) val tmp = records.iterator() while (tmp.hasNext) { val record = tmp.next() val key = record.key() val value = record.value() ctx.collect("key : " + key + ", value " + value) } } } override def cancel(): Unit = { println("cancel") } }).map(s => s + "map") .addSink(new RichSinkFunction[String] { // kafka producer 对象 var producer: KafkaProducer[String, String] = null // 初始化 override def open(parameters: Configuration): Unit = { producer = new KafkaProducer[String, String](Common.getProp) } override def close(): Unit = { if (producer == null) { producer.flush() producer.close() } } // 输出数据,每条结果都会执行一次,并发高的时候,可以按需做flush override def invoke(value: String, context: SinkFunction.Context[_]): Unit = { println("flink : " + value) val msg = new ProducerRecord[String, String]( "kafka_key_out", "key" + System.currentTimeMillis(), value) producer.send(msg) producer.flush() } }) // execute job env.execute("KafkaToKafka") } }
kafka 生产者数据:
{"user" : "venn", "name" : "venn", "pass" : 1561355358148} {"user" : "venn", "name" : "venn", "pass" : 1561355361271} {"user" : "venn", "name" : "venn", "pass" : 1561355364276} {"user" : "venn", "name" : "venn", "pass" : 1561355367279} {"user" : "venn", "name" : "venn", "pass" : 1561355370283}
flink 输出数据:
run flink : key : msgKey1561355358180, value {"user" : "venn", "name" : "venn", "pass" : 1561355358148}map flink : key : msgKey1561355361271, value {"user" : "venn", "name" : "venn", "pass" : 1561355361271}map flink : key : msgKey1561355364276, value {"user" : "venn", "name" : "venn", "pass" : 1561355364276}map flink : key : msgKey1561355367279, value {"user" : "venn", "name" : "venn", "pass" : 1561355367279}map flink : key : msgKey1561355370283, value {"user" : "venn", "name" : "venn", "pass" : 1561355370283}map flink : key : msgKey1561355373289, value {"user" : "venn", "name" : "venn", "pass" : 1561355373289}map flink : key : msgKey1561355376293, value {"user" : "venn", "name" : "venn", "pass" : 1561355376293}map
kafka 消费者:
receive -> key : key1561355430411, value : key : msgKey1561355430356, value {"user" : "venn", "name" : "venn", "pass" : 1561355430356}map receive -> key : key1561355433427, value : key : msgKey1561355433359, value {"user" : "venn", "name" : "venn", "pass" : 1561355433359}map receive -> key : key1561355436441, value : key : msgKey1561355436364, value {"user" : "venn", "name" : "venn", "pass" : 1561355436364}map receive -> key : key1561355439456, value : key : msgKey1561355439367, value {"user" : "venn", "name" : "venn", "pass" : 1561355439367}map receive -> key : key1561355442473, value : key : msgKey1561355442370, value {"user" : "venn", "name" : "venn", "pass" : 1561355442370}map receive -> key : key1561355445391, value : key : msgKey1561355445374, value {"user" : "venn", "name" : "venn", "pass" : 1561355445374}map
注:这样设计有个问题,没办法做到精确一次:
1、source 的精确一次可以使用kafka 的低级api,每次从指定的offset 读取数据,提交新的offset,然后将当前的offset 存到状态中,这样即使程序失败,重启到上一个checkpoint状态,数据也不会重复。
2、sink 的处理比较麻烦,以官网介绍的 “两段提交”的方法,提交生产者的数据。简单来说,就是每次数据处理完后,需要提交数据到kafka,不做真正的提交,仅写入一些已定义的状态变量,当chckpoint成功时Flink负责提交这些写入,否则就终止取消掉。
参考zhisheng 大佬的 博客 : 《从0到1学习Flink》—— 如何自定义 Data Source ?
《从0到1学习Flink》—— 如何自定义 Data Sink ?
两段提交的一篇翻译: 【译】Flink + Kafka 0.11端到端精确一次处理语义的实现