返回顶部

10.2图的一些术语(Graph Terminology)

10.2图的一些术语(Graph Terminology)

  1. 相邻(Adjacency):

无向图G中的一边e连接u,v,那么我们称u和v是相邻/连通(adjacent / neighbors / connected)的;其中也称u和v是边e的端点(endpoints)

  1. 领域(Neighborhood)

与顶点v相邻的所有点的集合N(v)称为v的领域(neighborhood of v);顶点集合A的领域指的是其内所有点领域的交集

  1. 度(degree)

顶点v的度,记作deg(v),等于入度(in-degree)和出度(out-degree)的和;度为0的点称为孤立点;度为1的点称为悬挂点(pendant)

  1. 握手定理(Handshaking Theorem)


无向图中,如果有度为奇数的点,那么这些点的个数必为偶数个

  1. 有向图中的相邻

e映射到(u, v),称之为u通过e邻接到v;u是e的初始点(initial vertex),v是e的终点(terminal vertex )
常用\(deg^-(v)\)表示v的入度, \(deg^+(v)\)表示v的出度

一些特殊的图的结构

完全图(Complete graphs)

n阶完全图记为\(K_n\)

环图(Cycles)

n阶环图记为\(C_n\)

车轮图(Wheels)

n阶车轮图记为\(W_n\)

n维体图(n-cubes/hypercubes)

n维体图记为\(Q_n\)

二部图/二分图(Bipartite Graphs)

顶点能被分为两个集合,使得任意一个集合中的点没有边直接相连

\(K_{m,n}\)记作两个部分分别为m和n个顶点的完全二分图

用邻接矩阵表示的话,结果是一个上三角/下三角矩阵

posted on 2020-01-05 00:01  进击の辣条  阅读(1109)  评论(0编辑  收藏  举报

导航