#动态规划#CF889E Mod Mod Mod
分析
这道题有一个很妙的地方就是将一段前缀整体一起做。
设 \(dp[i][j]\) 表示\(x\) 被前 \(i\) 个数取模后答案最大,并且 \(j\) 为取得此答案的最大值
最后再对 \(dp[i][j]+n*j\) 取最大值即可。
如果 \(j\) 被 \(a_i\) 取模之后仍然保留 \(j\),那么 \(dp[i][j\bmod a_i]=\max\{dp[i-1][j]+(j-j\bmod a_i)*(i-1)\}\)
如果不保留 \(j\),那么 \(dp[i][a_i-1]=\max\{dp[i-1][j]+\left\lfloor \frac{j-(a_i-1)}{a_i}\right\rfloor*a_i*(i-1)\}\)
然后取模之后会减半,所以时间复杂度为 \(O(n\log n\log a_i)\)
代码
#include <cstdio>
#include <cctype>
#include <map>
#include <algorithm>
using namespace std;
const int N=200011;
typedef long long lll;
map<lll,lll>dp; lll n,a[N],ans;
map<lll,lll>::iterator it;
lll iut(){
lll ans=0; char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans;
}
int main(){
n=iut();
for (int i=1;i<=n;++i) a[i]=iut();
dp[a[1]-1]=0;
for (int i=2;i<=n;++i){
for (it=dp.lower_bound(a[i]);it!=dp.end();dp.erase(it++)){
lll x=it->first,y=it->second,t0=dp[x%a[i]],t1=dp[a[i]-1];
if (t0<y+(x-x%a[i])*(i-1)) dp[x%a[i]]=y+(x-x%a[i])*(i-1);
if (t1<y+(x+1-a[i])/a[i]*a[i]*(i-1)) dp[a[i]-1]=y+(x+1-a[i])/a[i]*a[i]*(i-1);
}
}
for (it=dp.begin();it!=dp.end();dp.erase(it++)){
lll x=it->first,y=it->second;
if (ans<x*n+y) ans=x*n+y;
}
return !printf("%lld",ans);
}