#组合计数,卢卡斯定理#D 三元组
题目
当\(z=0\)时,\(f(x,y,z)=1\),
否则
\[f(x,y,z)=\sum_{x1=1}^x\sum_{y1=1}^y(x-x1+1)(y-y1+1)f(x1,y1,z-1)
\]
求
\[\sum_{x=1}^n\sum_{y=1}^mf(x,y,k)
\]
对998244353取模,\(n,m,k\leq 10^18\)
分析
考时发现将\(f(1,1)=1\)后跑\(2k+2\)次前缀和后\(f(n,m)\)就是答案,
所以题目就简化成\(k\)阶前缀和的答案就是\(f(i+k-1,k-1)\)
以下是北爷的证明
然后套个卢卡斯定理貌似就能玄学了