#Tarjan,SPFA,差分约束系统#BZOJ 2330 AcWing 368 银河

题目


分析

首先这明显是一道差分约束题,但是无解的情况确实比较恶心,

考虑它的边权为0或1,无解当且仅当某个强连通分量内的边至少一条边边权为1,

那么用有向图的Tarjan缩点后跑SPFA就可以了


代码

#include <cstdio>
#include <cctype>
#include <stack>
#include <cstring>
#include <queue>
#define rr register
using namespace std;
const int N=100011; stack<int>stac; queue<int>q;
struct node{int y,w,next;}e[N*3],E[N*3];
int dfn[N],low[N],v[N],dis[N],hs[N],col[N];
int siz[N],as[N],cnt,tot,et,Et,n,m; long long ans;
inline signed iut(){
	rr int ans=0; rr char c=getchar();
	while (!isdigit(c)) c=getchar();
	while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
	return ans;
}
inline void add(int x,int y,int w){E[++Et]=(node){y,w,hs[x]},hs[x]=Et;}
inline signed min(int a,int b){return a<b?a:b;}
inline void tarjan(int x){
	dfn[x]=low[x]=++tot,
	stac.push(x),v[x]=1;
	for (rr int i=hs[x];i;i=E[i].next)
	if (!dfn[E[i].y]){
		tarjan(E[i].y);
		low[x]=min(low[x],low[E[i].y]);
	}else if (v[E[i].y])
	    low[x]=min(low[x],dfn[E[i].y]);
	if (dfn[x]==low[x]){
		rr int y; ++cnt;
		do{
			y=stac.top(); stac.pop();
			col[y]=cnt,v[y]=0,++siz[cnt];
		}while (x^y);
	}
}
signed main(){
	n=iut()+1; m=iut();
	for (rr int i=1;i<n;++i) add(n,i,1);
	for (rr int i=1;i<=m;++i){
		rr int z=iut(),x=iut(),y=iut();
		switch (z){
			case 1:{
				add(x,y,0),add(y,x,0);
				break;
			}
			case 2:{
				add(x,y,1);
				break;
			}
			case 3:{
				add(y,x,0);
				break;
			}
			case 4:{
				add(y,x,1);
				break;
			}
			case 5:{
				add(x,y,0);
				break;
			}
		}
	}
	for (rr int i=1;i<=n;++i)
	    if (!dfn[i]) tarjan(i);
	for (rr int i=1;i<=n;++i)
	for (rr int j=hs[i];j;j=E[j].next)
	if (col[i]^col[E[j].y])
		e[++et]=(node){col[E[j].y],E[j].w,as[col[i]]},as[col[i]]=et; 
	else if (E[j].w) return !printf("-1");
	memset(dis,0xcf,sizeof(dis));
	q.push(col[n]),v[col[n]]=1,dis[col[n]]=0;
	while (!q.empty()){
		rr int x=q.front(); q.pop();
		for (rr int i=as[x];i;i=e[i].next)
		if (dis[e[i].y]<dis[x]+e[i].w){
			dis[e[i].y]=dis[x]+e[i].w;
			if (!v[e[i].y]) v[e[i].y]=1,q.push(e[i].y);
		}
		v[x]=0;
	}
	for (rr int i=1;i<=cnt;++i) ans+=siz[i]*dis[i];
	return !printf("%lld",ans);
}
posted @ 2020-11-04 20:49  lemondinosaur  阅读(71)  评论(0编辑  收藏  举报