#树状数组#洛谷 5677 [GZOI2017]配对统计
分析
考虑处理出所有右端点的能够匹配的左端点,然后用树状数组离线查询
代码
#include <cstdio>
#include <cctype>
#include <vector>
#include <algorithm>
#define rr register
using namespace std;
const int N=300011; vector<int>K[N];
struct rec{int w,rk;}a[N];
struct three{int l,r,rk;}q[N];
int c[N],n,m,ans[N]; long long Ans;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void update(int x,int y){
for (;x<=n;x+=-x&x) c[x]+=y;
}
inline signed query(int x){
rr int ans=0;
for (;x;x-=-x&x) ans+=c[x];
return ans;
}
inline void add(int x,int y){
if (x>y) x^=y,y^=x,x^=y;
K[y].push_back(x);
}
bool cmp1(rec x,rec y){return x.w<y.w;}
bool cmp2(three x,three y){return x.r<y.r;}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=n;++i)
a[i]=(rec){iut(),i};
sort(a+1,a+1+n,cmp1);
for (rr int i=1;i<=n;++i){
rr int t=2e9;
if (i>1&&a[i].w-a[i-1].w<t) t=a[i].w-a[i-1].w;
if (i<n&&a[i+1].w-a[i].w<t) t=a[i+1].w-a[i].w;
if (i>1&&a[i].w-a[i-1].w==t) add(a[i].rk,a[i-1].rk);
if (i<n&&a[i+1].w-a[i].w==t) add(a[i].rk,a[i+1].rk);
}
for (rr int i=1;i<=m;++i) q[i]=(three){iut(),iut(),i};
sort(q+1,q+1+m,cmp2);
for (rr int i=1,j=1;i<=m;++i){
for (;j<=q[i].r;++j){
rr int len=K[j].size();
for (rr int o=0;o<len;++o)
update(K[j][o],1);
}
ans[q[i].rk]=query(q[i].r)-query(q[i].l-1);
}
for (rr int i=1;i<=m;++i) Ans+=1ll*ans[i]*i;
return !printf("%lld",Ans);
}