#数学期望,状压dp,记忆化搜索#nssl 1468 V
分析
赛时写了个\(O(n!)\)的纯暴力,其实我现在才发现\(O(n!)\)的暴力一般都能用\(O(n2^n)\)的状压dp解决
但是其实不是每个状态都能被访问到,所以若\(n\)过大,用\(map\)存,否则用数组存,还有记忆化搜索优化时间,反正能过
代码
#include <cstdio>
#include <map>
#define rr register
using namespace std;
const int N=31,M=24; int n,k,now;
struct either{
double ku[(1<<M)|1];
map<int,double>uk[N];
inline void Init(){for (rr int i=0;i<=(1<<M);++i) ku[i]=-1;}
inline bool check(int now,int len){return len<M?(ku[(1<<len)|now]!=-1):uk[len].count(now);}
inline double &Get(int now,int len){return len<M?ku[(1<<len)|now]:uk[len][now];}
}T;
inline signed shift(int now,int len){return ((now>>(len+1))<<len)|(now&((1<<len)-1));}
inline double dfs(int now,int len){
if (len<=k) return 0;
if (T.check(now,len)) return T.Get(now,len);
rr double &ans=T.Get(now,len); ans=0;
for (rr int i=0,j=len-1;i<=j;++i,--j){
rr double t1=dfs(shift(now,i),len-1)+((now>>i)&1);
if (i==j) {ans+=t1; continue;}
rr double t2=dfs(shift(now,j),len-1)+((now>>j)&1);
ans+=2*(t1>t2?t1:t2);
}
return ans/=len;
}
signed main(){
scanf("%d%d",&n,&k),k=n-k,T.Init();
for (rr int i=0;i<n;++i){
rr char c=getchar();
while (c!='W'&&c!='B') c=getchar();
now|=(c=='W')<<i;
}
return !printf("%lf",dfs(now,n));
}