实战Android:图片处理之ColorMatrix和Matrix实例

原博文在此,原来的文章中对Matrix和ColorMatrix都有解释,不再多说。

https://blog.csdn.net/qqxiaoqiang1573/article/details/50781466

https://blog.csdn.net/QQxiaoqiang1573/article/details/50847587

看一下效果,

原文的源码我整合到一个项目中,有些显示地方作了改动,下载即可直接运行。

https://download.csdn.net/download/tanmx219/10574162

 

下面是来自Android 官网,因为不想老是FQ,所以拷贝过来Ref.

https://developer.android.com/reference/android/graphics/Matrix

https://developer.android.com/reference/android/graphics/ColorMatrix

ColorMatrix

4x5 matrix for transforming the color and alpha components of a Bitmap. The matrix can be passed as single array, and is treated as follows:

[ a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t ]

When applied to a color [R, G, B, A], the resulting color is computed as:

R’ = a*R + b*G + c*B + d*A + e;

G’ = f*R + g*G + h*B + i*A + j;

B’ = k*R + l*G + m*B + n*A + o;

A’ = p*R + q*G + r*B + s*A + t;

That resulting color [R’, G’, B’, A’] then has each channel clamped to the 0 to 255 range.

The sample ColorMatrix below inverts incoming colors by scaling each channel by -1, and then shifting the result up by255 to remain in the standard color space.

[ -1, 0, 0, 0, 255, 0, -1, 0, 0, 255, 0, 0, -1, 0, 255, 0, 0, 0, 1, 0 ]

Summary

Public constructors

ColorMatrix()

Create a new colormatrix initialized to identity (as if reset() had been called).

ColorMatrix(float[] src)

Create a new colormatrix initialized with the specified array of values.

ColorMatrix(ColorMatrix src)

Create a new colormatrix initialized with the specified colormatrix.

Public methods

booleanequals(Object obj)

Indicates whether some other object is "equal to" this one.

final float[]getArray()

Return the array of floats representing this colormatrix.

voidpostConcat(ColorMatrix postmatrix)

Concat this colormatrix with the specified postmatrix.

voidpreConcat(ColorMatrix prematrix)

Concat this colormatrix with the specified prematrix.

voidreset()

Set this colormatrix to identity:

[ 1 0 0 0 0 - red vector 0 1 0 0 0 - green vector 0 0 1 0 0 - blue vector 0 0 0 1 0 ] - alpha vector

 

voidset(float[] src)

Assign the array of floats into this matrix, copying all of its values.

voidset(ColorMatrix src)

Assign the src colormatrix into this matrix, copying all of its values.

voidsetConcat(ColorMatrix matA, ColorMatrix matB)

Set this colormatrix to the concatenation of the two specified colormatrices, such that the resulting colormatrix has the same effect as applying matB and then applying matA.

voidsetRGB2YUV()

Set the matrix to convert RGB to YUV

voidsetRotate(int axis, float degrees)

Set the rotation on a color axis by the specified values.

voidsetSaturation(float sat)

Set the matrix to affect the saturation of colors.

voidsetScale(float rScale, float gScale, float bScale, float aScale)

Set this colormatrix to scale by the specified values.

voidsetYUV2RGB()

Set the matrix to convert from YUV to RGB

Public methods

equals

public boolean equals (Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

  • It is reflexive: for any non-null reference value xx.equals(x) should return true.
  • It is symmetric: for any non-null reference values x and yx.equals(y) should return true if and only ify.equals(x) returns true.
  • It is transitive: for any non-null reference values xy, and z, if x.equals(y) returns true and y.equals(z)returns true, then x.equals(z) should return true.
  • It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified.
  • For any non-null reference value xx.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

Parameters
objObject: the reference object with which to compare.

 

Returns
booleantrue if this object is the same as the obj argument; false otherwise.

 

getArray

public final float[] getArray ()

Return the array of floats representing this colormatrix.

 

Returns
float[]

 

postConcat

public void postConcat (ColorMatrix postmatrix)

Concat this colormatrix with the specified postmatrix.

This is logically the same as calling setConcat(postmatrix, this);

 

 

Parameters
postmatrixColorMatrix

 

preConcat

public void preConcat (ColorMatrix prematrix)

Concat this colormatrix with the specified prematrix.

This is logically the same as calling setConcat(this, prematrix);

 

 

Parameters
prematrixColorMatrix

 

reset

public void reset ()

Set this colormatrix to identity:

 

[ 1 0 0 0 0 - red vector 0 1 0 0 0 - green vector 0 0 1 0 0 - blue vector 0 0 0 1 0 ] - alpha vector

 

 

set

public void set (float[] src)

Assign the array of floats into this matrix, copying all of its values.

 

Parameters
srcfloat

 

set

public void set (ColorMatrix src)

Assign the src colormatrix into this matrix, copying all of its values.

 

Parameters
srcColorMatrix

 

setConcat

public void setConcat (ColorMatrix matA, ColorMatrix matB)

Set this colormatrix to the concatenation of the two specified colormatrices, such that the resulting colormatrix has the same effect as applying matB and then applying matA.

It is legal for either matA or matB to be the same colormatrix as this.

 

 

Parameters
matAColorMatrix

 

matBColorMatrix

 

setRGB2YUV

public void setRGB2YUV ()

Set the matrix to convert RGB to YUV

 

setRotate

public void setRotate (int axis, float degrees)

Set the rotation on a color axis by the specified values.

axis=0 correspond to a rotation around the RED color axis=1 correspond to a rotation around the GREEN coloraxis=2 correspond to a rotation around the BLUE color

 

 

Parameters
axisint

 

degreesfloat

 

setSaturation

public void setSaturation (float sat)

Set the matrix to affect the saturation of colors.

 

Parameters
satfloat: A value of 0 maps the color to gray-scale. 1 is identity.

 

setScale

public void setScale (float rScale, float gScale, float bScale, float aScale)

Set this colormatrix to scale by the specified values.

 

Parameters
rScalefloat

 

gScalefloat

 

bScalefloat

 

aScalefloat

 

setYUV2RGB

public void setYUV2RGB ()

Set the matrix to convert from YUV to RGB

 

Matrix

java.lang.Object
   ↳android.graphics.Matrix

 

The Matrix class holds a 3x3 matrix for transforming coordinates.

Summary

Nested classes

enumMatrix.ScaleToFit

Controlls how the src rect should align into the dst rect for setRectToRect(). 

Constants

intMPERSP_0

 

intMPERSP_1

 

intMPERSP_2

 

intMSCALE_X

 

intMSCALE_Y

 

intMSKEW_X

 

intMSKEW_Y

 

intMTRANS_X

 

intMTRANS_Y

 

Public constructors

Matrix()

Create an identity matrix

Matrix(Matrix src)

Create a matrix that is a (deep) copy of src

Public methods

booleanequals(Object obj)

Returns true iff obj is a Matrix and its values equal our values.

voidgetValues(float[] values)

Copy 9 values from the matrix into the array.

inthashCode()

Returns a hash code value for the object.

booleaninvert(Matrix inverse)

If this matrix can be inverted, return true and if inverse is not null, set inverse to be the inverse of this matrix.

booleanisAffine()

Gets whether this matrix is affine.

booleanisIdentity()

Returns true if the matrix is identity.

voidmapPoints(float[] dst, int dstIndex, float[] src, int srcIndex, int pointCount)

Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst.

voidmapPoints(float[] dst, float[] src)

Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst.

voidmapPoints(float[] pts)

Apply this matrix to the array of 2D points, and write the transformed points back into the array

floatmapRadius(float radius)

Return the mean radius of a circle after it has been mapped by this matrix.

booleanmapRect(RectF rect)

Apply this matrix to the rectangle, and write the transformed rectangle back into it.

booleanmapRect(RectF dst, RectF src)

Apply this matrix to the src rectangle, and write the transformed rectangle into dst.

voidmapVectors(float[] vecs)

Apply this matrix to the array of 2D vectors, and write the transformed vectors back into the array.

voidmapVectors(float[] dst, int dstIndex, float[] src, int srcIndex, int vectorCount)

Apply this matrix to the array of 2D vectors specified by src, and write the transformed vectors into the array of vectors specified by dst.

voidmapVectors(float[] dst, float[] src)

Apply this matrix to the array of 2D vectors specified by src, and write the transformed vectors into the array of vectors specified by dst.

booleanpostConcat(Matrix other)

Postconcats the matrix with the specified matrix.

booleanpostRotate(float degrees, float px, float py)

Postconcats the matrix with the specified rotation.

booleanpostRotate(float degrees)

Postconcats the matrix with the specified rotation.

booleanpostScale(float sx, float sy, float px, float py)

Postconcats the matrix with the specified scale.

booleanpostScale(float sx, float sy)

Postconcats the matrix with the specified scale.

booleanpostSkew(float kx, float ky)

Postconcats the matrix with the specified skew.

booleanpostSkew(float kx, float ky, float px, float py)

Postconcats the matrix with the specified skew.

booleanpostTranslate(float dx, float dy)

Postconcats the matrix with the specified translation.

booleanpreConcat(Matrix other)

Preconcats the matrix with the specified matrix.

booleanpreRotate(float degrees)

Preconcats the matrix with the specified rotation.

booleanpreRotate(float degrees, float px, float py)

Preconcats the matrix with the specified rotation.

booleanpreScale(float sx, float sy)

Preconcats the matrix with the specified scale.

booleanpreScale(float sx, float sy, float px, float py)

Preconcats the matrix with the specified scale.

booleanpreSkew(float kx, float ky)

Preconcats the matrix with the specified skew.

booleanpreSkew(float kx, float ky, float px, float py)

Preconcats the matrix with the specified skew.

booleanpreTranslate(float dx, float dy)

Preconcats the matrix with the specified translation.

booleanrectStaysRect()

Returns true if will map a rectangle to another rectangle.

voidreset()

Set the matrix to identity

voidset(Matrix src)

(deep) copy the src matrix into this matrix.

booleansetConcat(Matrix a, Matrix b)

Set the matrix to the concatenation of the two specified matrices and return true.

booleansetPolyToPoly(float[] src, int srcIndex, float[] dst, int dstIndex, int pointCount)

Set the matrix such that the specified src points would map to the specified dst points.

booleansetRectToRect(RectF src, RectF dst, Matrix.ScaleToFit stf)

Set the matrix to the scale and translate values that map the source rectangle to the destination rectangle, returning true if the the result can be represented.

voidsetRotate(float degrees, float px, float py)

Set the matrix to rotate by the specified number of degrees, with a pivot point at (px, py).

voidsetRotate(float degrees)

Set the matrix to rotate about (0,0) by the specified number of degrees.

voidsetScale(float sx, float sy)

Set the matrix to scale by sx and sy.

voidsetScale(float sx, float sy, float px, float py)

Set the matrix to scale by sx and sy, with a pivot point at (px, py).

voidsetSinCos(float sinValue, float cosValue, float px, float py)

Set the matrix to rotate by the specified sine and cosine values, with a pivot point at (px, py).

voidsetSinCos(float sinValue, float cosValue)

Set the matrix to rotate by the specified sine and cosine values.

voidsetSkew(float kx, float ky)

Set the matrix to skew by sx and sy.

voidsetSkew(float kx, float ky, float px, float py)

Set the matrix to skew by sx and sy, with a pivot point at (px, py).

voidsetTranslate(float dx, float dy)

Set the matrix to translate by (dx, dy).

voidsetValues(float[] values)

Copy 9 values from the array into the matrix.

StringtoShortString()
StringtoString()

Returns a string representation of the object.

 

Public methods

equals

public boolean equals (Object obj)

Returns true iff obj is a Matrix and its values equal our values.

 

Parameters
objObject: the reference object with which to compare.

 

Returns
booleantrue if this object is the same as the obj argument; false otherwise.

 

getValues

public void getValues (float[] values)

Copy 9 values from the matrix into the array.

 

Parameters
valuesfloat

 

hashCode

public int hashCode ()

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by HashMap.

The general contract of hashCode is:

  • Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equalscomparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application.
  • If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result.
  • It is not required that if two objects are unequal according to the equals(java.lang.Object) method, then calling the hashCode method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hash tables.

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the Java™ programming language.)

 

Returns
inta hash code value for this object.

 

invert

public boolean invert (Matrix inverse)

If this matrix can be inverted, return true and if inverse is not null, set inverse to be the inverse of this matrix. If this matrix cannot be inverted, ignore inverse and return false.

 

Parameters
inverseMatrix

 

Returns
boolean

 

isAffine

public boolean isAffine ()

Gets whether this matrix is affine. An affine matrix preserves straight lines and has no perspective.

 

Returns
booleanWhether the matrix is affine.

 

isIdentity

public boolean isIdentity ()

Returns true if the matrix is identity. This maybe faster than testing if (getType() == 0)

 

Returns
boolean

 

mapPoints

public void mapPoints (float[] dst, int dstIndex, float[] src, int srcIndex, int pointCount)

Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst. The two arrays represent their "points" as pairs of floats [x, y].

 

Parameters
dstfloat: The array of dst points (x,y pairs)

 

dstIndexint: The index of the first [x,y] pair of dst floats

 

srcfloat: The array of src points (x,y pairs)

 

srcIndexint: The index of the first [x,y] pair of src floats

 

pointCountint: The number of points (x,y pairs) to transform

 

mapPoints

public void mapPoints (float[] dst, float[] src)

Apply this matrix to the array of 2D points specified by src, and write the transformed points into the array of points specified by dst. The two arrays represent their "points" as pairs of floats [x, y].

 

Parameters
dstfloat: The array of dst points (x,y pairs)

 

srcfloat: The array of src points (x,y pairs)

 

mapPoints

public void mapPoints (float[] pts)

Apply this matrix to the array of 2D points, and write the transformed points back into the array

 

Parameters
ptsfloat: The array [x0, y0, x1, y1, ...] of points to transform.

 

mapRadius

public float mapRadius (float radius)

Return the mean radius of a circle after it has been mapped by this matrix. NOTE: in perspective this value assumes the circle has its center at the origin.

 

Parameters
radiusfloat

 

Returns
float

 

mapRect

public boolean mapRect (RectF rect)

Apply this matrix to the rectangle, and write the transformed rectangle back into it. This is accomplished by transforming the 4 corners of rect, and then setting it to the bounds of those points

 

Parameters
rectRectF: The rectangle to transform.

 

Returns
booleanthe result of calling rectStaysRect()

 

mapRect

public boolean mapRect (RectF dst, RectF src)

Apply this matrix to the src rectangle, and write the transformed rectangle into dst. This is accomplished by transforming the 4 corners of src, and then setting dst to the bounds of those points.

 

Parameters
dstRectF: Where the transformed rectangle is written.

 

srcRectF: The original rectangle to be transformed.

 

Returns
booleanthe result of calling rectStaysRect()

 

mapVectors

public void mapVectors (float[] vecs)

Apply this matrix to the array of 2D vectors, and write the transformed vectors back into the array. Note: this method does not apply the translation associated with the matrix. Use mapPoints(float[]) if you want the translation to be applied.

 

Parameters
vecsfloat: The array [x0, y0, x1, y1, ...] of vectors to transform.

 

mapVectors

public void mapVectors (float[] dst, int dstIndex, float[] src, int srcIndex, int vectorCount)

Apply this matrix to the array of 2D vectors specified by src, and write the transformed vectors into the array of vectors specified by dst. The two arrays represent their "vectors" as pairs of floats [x, y]. Note: this method does not apply the translation associated with the matrix. Use mapPoints(float[], int, float[], int, int) if you want the translation to be applied.

 

Parameters
dstfloat: The array of dst vectors (x,y pairs)

 

dstIndexint: The index of the first [x,y] pair of dst floats

 

srcfloat: The array of src vectors (x,y pairs)

 

srcIndexint: The index of the first [x,y] pair of src floats

 

vectorCountint: The number of vectors (x,y pairs) to transform

 

mapVectors

public void mapVectors (float[] dst, float[] src)

Apply this matrix to the array of 2D vectors specified by src, and write the transformed vectors into the array of vectors specified by dst. The two arrays represent their "vectors" as pairs of floats [x, y]. Note: this method does not apply the translation associated with the matrix. Use mapPoints(float[], float[]) if you want the translation to be applied.

 

Parameters
dstfloat: The array of dst vectors (x,y pairs)

 

srcfloat: The array of src vectors (x,y pairs)

 

postConcat

public boolean postConcat (Matrix other)

Postconcats the matrix with the specified matrix. M' = other * M

 

Parameters
otherMatrix

 

Returns
boolean

 

postRotate

public boolean postRotate (float degrees, float px, float py)

Postconcats the matrix with the specified rotation. M' = R(degrees, px, py) * M

 

Parameters
degreesfloat

 

pxfloat

 

pyfloat

 

Returns
boolean

 

postRotate

public boolean postRotate (float degrees)

Postconcats the matrix with the specified rotation. M' = R(degrees) * M

 

Parameters
degreesfloat

 

Returns
boolean

 

postScale

public boolean postScale (float sx, float sy, float px, float py)

Postconcats the matrix with the specified scale. M' = S(sx, sy, px, py) * M

 

Parameters
sxfloat

 

syfloat

 

pxfloat

 

pyfloat

 

Returns
boolean

 

postScale

public boolean postScale (float sx, float sy)

Postconcats the matrix with the specified scale. M' = S(sx, sy) * M

 

Parameters
sxfloat

 

syfloat

 

Returns
boolean

 

postSkew

public boolean postSkew (float kx, float ky)

Postconcats the matrix with the specified skew. M' = K(kx, ky) * M

 

Parameters
kxfloat

 

kyfloat

 

Returns
boolean

 

postSkew

public boolean postSkew (float kx, float ky, float px, float py)

Postconcats the matrix with the specified skew. M' = K(kx, ky, px, py) * M

 

Parameters
kxfloat

 

kyfloat

 

pxfloat

 

pyfloat

 

Returns
boolean

 

postTranslate

public boolean postTranslate (float dx, float dy)

Postconcats the matrix with the specified translation. M' = T(dx, dy) * M

 

Parameters
dxfloat

 

dyfloat

 

Returns
boolean

 

preConcat

public boolean preConcat (Matrix other)

Preconcats the matrix with the specified matrix. M' = M * other

 

Parameters
otherMatrix

 

Returns
boolean

 

preRotate

public boolean preRotate (float degrees)

Preconcats the matrix with the specified rotation. M' = M * R(degrees)

 

Parameters
degreesfloat

 

Returns
boolean

 

preRotate

public boolean preRotate (float degrees, float px, float py)

Preconcats the matrix with the specified rotation. M' = M * R(degrees, px, py)

 

Parameters
degreesfloat

 

pxfloat

 

pyfloat

 

Returns
boolean

 

preScale

public boolean preScale (float sx, float sy)

Preconcats the matrix with the specified scale. M' = M * S(sx, sy)

 

Parameters
sxfloat

 

syfloat

 

Returns
boolean

 

preScale

public boolean preScale (float sx, float sy, float px, float py)

Preconcats the matrix with the specified scale. M' = M * S(sx, sy, px, py)

 

Parameters
sxfloat

 

syfloat

 

pxfloat

 

pyfloat

 

Returns
boolean

 

preSkew

public boolean preSkew (float kx, float ky)

Preconcats the matrix with the specified skew. M' = M * K(kx, ky)

 

Parameters
kxfloat

 

kyfloat

 

Returns
boolean

 

preSkew

public boolean preSkew (float kx, float ky, float px, float py)

Preconcats the matrix with the specified skew. M' = M * K(kx, ky, px, py)

 

Parameters
kxfloat

 

kyfloat

 

pxfloat

 

pyfloat

 

Returns
boolean

 

preTranslate

public boolean preTranslate (float dx, float dy)

Preconcats the matrix with the specified translation. M' = M * T(dx, dy)

 

Parameters
dxfloat

 

dyfloat

 

Returns
boolean

 

rectStaysRect

public boolean rectStaysRect ()

Returns true if will map a rectangle to another rectangle. This can be true if the matrix is identity, scale-only, or rotates a multiple of 90 degrees.

 

Returns
boolean

 

reset

public void reset ()

Set the matrix to identity

 

set

public void set (Matrix src)

(deep) copy the src matrix into this matrix. If src is null, reset this matrix to the identity matrix.

 

Parameters
srcMatrix

 

setConcat

public boolean setConcat (Matrix a, Matrix b)

Set the matrix to the concatenation of the two specified matrices and return true.

Either of the two matrices may also be the target matrix, that is matrixA.setConcat(matrixA, matrixB); is valid.

In Build.VERSION_CODES.GINGERBREAD_MR1 and below, this function returns true only if the result can be represented. InBuild.VERSION_CODES.HONEYCOMB and above, it always returns true.

Parameters
aMatrix

 

bMatrix

 

Returns
boolean

 

setPolyToPoly

public boolean setPolyToPoly (float[] src, int srcIndex, float[] dst, int dstIndex, int pointCount)

Set the matrix such that the specified src points would map to the specified dst points. The "points" are represented as an array of floats, order [x0, y0, x1, y1, ...], where each "point" is 2 float values.

Parameters
srcfloat: The array of src [x,y] pairs (points)

 

srcIndexint: Index of the first pair of src values

 

dstfloat: The array of dst [x,y] pairs (points)

 

dstIndexint: Index of the first pair of dst values

 

pointCountint: The number of pairs/points to be used. Must be [0..4]

 

Returns
booleantrue if the matrix was set to the specified transformation

 

setRectToRect

public boolean setRectToRect (RectF src, RectF dst, Matrix.ScaleToFit stf)

Set the matrix to the scale and translate values that map the source rectangle to the destination rectangle, returning true if the the result can be represented.

Parameters
srcRectF: the source rectangle to map from.

 

dstRectF: the destination rectangle to map to.

 

stfMatrix.ScaleToFit: the ScaleToFit option

 

Returns
booleantrue if the matrix can be represented by the rectangle mapping.

 

setRotate

public void setRotate (float degrees, float px, float py)

Set the matrix to rotate by the specified number of degrees, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.

Parameters
degreesfloat

 

pxfloat

 

pyfloat

 

setRotate

public void setRotate (float degrees)

Set the matrix to rotate about (0,0) by the specified number of degrees.

Parameters
degreesfloat

 

setScale

public void setScale (float sx, float sy)

Set the matrix to scale by sx and sy.

Parameters
sxfloat

 

syfloat

 

setScale

public void setScale (float sx, float sy, float px, float py)

Set the matrix to scale by sx and sy, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.

Parameters
sxfloat

 

syfloat

 

pxfloat

 

pyfloat

 

setSinCos

public void setSinCos (float sinValue, float cosValue, float px, float py)

Set the matrix to rotate by the specified sine and cosine values, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.

Parameters
sinValuefloat

 

cosValuefloat

 

pxfloat

 

pyfloat

 

setSinCos

public void setSinCos (float sinValue, float cosValue)

Set the matrix to rotate by the specified sine and cosine values.

 

Parameters
sinValuefloat

 

cosValuefloat

 

setSkew

public void setSkew (float kx, float ky)

Set the matrix to skew by sx and sy.

 

Parameters
kxfloat

 

kyfloat

 

setSkew

public void setSkew (float kx, float ky, float px, float py)

Set the matrix to skew by sx and sy, with a pivot point at (px, py). The pivot point is the coordinate that should remain unchanged by the specified transformation.

 

Parameters
kxfloat

 

kyfloat

 

pxfloat

 

pyfloat

 

setTranslate

public void setTranslate (float dx, float dy)

Set the matrix to translate by (dx, dy).

 

Parameters
dxfloat

 

dyfloat

 

setValues

public void setValues (float[] values)

Copy 9 values from the array into the matrix. Depending on the implementation of Matrix, these may be transformed into 16.16 integers in the Matrix, such that a subsequent call to getValues() will not yield exactly the same values.

Parameters
valuesfloat

 

toShortString

public String toShortString ()

Returns
String

 

toString

public String toString ()

Returns a string representation of the object. In general, the toString method returns a string that "textually represents" this object. The result should be a concise but informative representation that is easy for a person to read. It is recommended that all subclasses override this method.

The toString method for class Object returns a string consisting of the name of the class of which the object is an instance, the at-sign character `@', and the unsigned hexadecimal representation of the hash code of the object. In other words, this method returns a string equal to the value of:

 getClass().getName() + '@' + Integer.toHexString(hashCode())

 

posted @ 2018-07-31 11:38  SpaceVision  阅读(96)  评论(0编辑  收藏  举报