BZOJ.3329.Xorequ(数位DP)
\(Description\)
给定\(n\),对于方程\(x\oplus 3x=2x\),需求出:
- 有多少\(x\leq n\)的正整数解。
- 有多少\(x\leq 2^n\)的正整数解,模1e9+7。
\(n\leq 10^{18}, 1000\)组数据。
\(Solution\)
x^3x=2x -> x^2x=3x
因为a^b + ((a&b)<<1)=a+b
,x^2x = x+2x
,所以x和2x的二进制表示中不存在相邻的1。
(或者,因为x+2x=3x
,所以x^2x
没有抵消任何的1,所以x和2x没有相邻的1)
那么第一问数位DP,第二问上界为\(2^n\),按位DP就行了。
\(f[i]\)表示到第\(i\)位的方案数。每位要么填\(0\)要么填\(1\),所以\(f[i]=f[i-1]+f[i-2]\)。就是斐波那契数列(从斐波那契表示法也能看出与这个DP的类似)。
答案是\(f[n+1]\)(\(2^n\)是\(n+1\)位。。==)
好像第一问能用类似二进制拆分的方法O(64)做?https://blog.csdn.net/jr_mz/article/details/50351557 。不想看了。
//824kb 16ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
#define mod 1000000007
typedef long long LL;
const int N=66;
int bit[N];
LL f[N][2];
bool vis[N][2];
struct Matrix
{
int a[2][2];
Matrix operator *(const Matrix &x)const
{
Matrix res;
for(int i=0; i<2; ++i)
for(int j=0; j<2; ++j)
{
LL tmp=1ll*a[i][0]*x.a[0][j]+1ll*a[i][1]*x.a[1][j];
res.a[i][j]=tmp%mod;
}
return res;
}
};
inline LL read()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int FP(Matrix x,LL k)
{
Matrix t=x;
for(--k; k; k>>=1,x=x*x)
if(k&1) t=t*x;
return (t.a[0][0]+t.a[0][1])%mod;
return t.a[0][0];
}
LL DFS(int x,int lim,int las)
{
if(!x) return 1;
if(!lim && vis[x][las]) return f[x][las];
LL res=0; int up=lim?bit[x]:1;
res+=DFS(x-1,lim&&!up,0);
if(up&&!las) res+=DFS(x-1,lim&&up,1);
if(!lim) vis[x][las]=1,f[x][las]=res;
return res;
}
LL Solve(LL n)
{
int cnt=0;
for(; n; bit[++cnt]=n&1, n>>=1);
return DFS(cnt,1,0)-1;
}
int main()
{
Matrix mat;
mat.a[0][0]=mat.a[0][1]=mat.a[1][0]=1, mat.a[1][1]=0;
for(int T=read(); T--; )
{
LL n=read();
printf("%lld\n%d\n",Solve(n),FP(mat,n));
}
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------