AGC 015C.Nuske vs Phantom Thnook(思路 前缀和)
闻本题有格子,且何谓格子也
\(Description\)
给定\(n*m\)的蓝白矩阵,保证蓝格子形成的的同一连通块内,某蓝格子到达另一个蓝格子的路径唯一。
\(Q\)次询问。每次询问一个子矩形内蓝格子组成的连通块数。
\(Solution\)
不会形成环,即一个连通块是一棵树,即点数=边数+1。
那么对于一个子矩形,求它里面的蓝格子数n和蓝格子之间的边数m,n-m就是连通块数了。
横边竖边分开,都用前缀和维护。
如果有环,则边数>=点数就没法做了。
//89ms 52864KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=2005;
int sp[N][N],sr[N][N]/*crosswise*/,sc[N][N]/*lengthways*/;
bool mp[N][N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
int n=read(),m=read(),Q=read();
for(int i=1; i<=n; ++i)
{
register char c=gc(); for(;!isdigit(c);c=gc());
mp[i][1]=c-'0';
for(int j=2; j<=m; mp[i][j++]=gc()-'0');
}
for(int i=1; i<=n; ++i)
for(int j=1; j<=m; ++j)
{
if(mp[i][j])
sp[i][j]=sp[i-1][j]+sp[i][j-1]-sp[i-1][j-1]+1,
sc[i][j]=sc[i-1][j]+sc[i][j-1]-sc[i-1][j-1]+mp[i-1][j],
sr[i][j]=sr[i-1][j]+sr[i][j-1]-sr[i-1][j-1]+mp[i][j-1];
else
sp[i][j]=sp[i-1][j]+sp[i][j-1]-sp[i-1][j-1],
sc[i][j]=sc[i-1][j]+sc[i][j-1]-sc[i-1][j-1],
sr[i][j]=sr[i-1][j]+sr[i][j-1]-sr[i-1][j-1];
}
for(int x,y,x2,y2; Q--; )
{
x=read(),y=read(),x2=read(),y2=read();
int p=sp[x2][y2]-sp[x-1][y2]-sp[x2][y-1]+sp[x-1][y-1],
e=sr[x2][y2]-sr[x-1][y2]-sr[x2][y]+sr[x-1][y]+sc[x2][y2]-sc[x][y2]-sc[x2][y-1]+sc[x][y-1];
printf("%d\n",p-e);
}
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------