BZOJ.2660.[BJOI2012]最多的方案(DP)
题意:给一个正整数n,它可以写成一些斐波那契数的和的形式。如果我们要求不同的方案中不能有相同的斐波那契数,那么对一个n最多可以写出多少种方案?
首先我们知道:
也很好理解。如果相邻两项出现在斐波那契表示法中,那它们显然可以合并。
所以我们能得到\(n\)的斐波那契表示,记\(pos[i]\)为\(n\)的斐波那契表示法中,第\(i\)项在原斐波那契的下标,那么:\(n=\sum_{i=1}^{cnt}F[pos[i]]\)。
如果方案中不直接存在\(F[pos[i]]\)(把\(F[pos[i]]\)分解),那它只能由\(<pos[i]\)的项构成。于是我们考虑递推。
\(f[i][1/0]\)表示当前考虑到\(pos[i]\),是/否分解\(F[pos[i]]\),且满足\(F[pos[1]]\sim F[pos[i]]\)都被组成,的方案数。
如果不分解\(F[pos[i]]\),那么有$$f[i][0]=f[i-1][0]+f[i-1][1]$$,且\(F[pos[i+1]]\)只能由\([pos[i]+1,pos[i+1]]\)之间的项得到。
如果分解\(F[pos[i]]\),则\(F[pos[i+1]]\)可以由\([pos[i],pos[i+1]]\)之间的项得到,而且若分解\(F_i=F_{i-1}+F_{i-2}\),下一次只能分解\(F_{i-2}=F_{i-3}+F_{i-4}\),再下一次只能分解\(F_{i-4}=\ldots\ldots\)。于是我们可以得到在区间\([l,r-1]\)中分解\(F_r\)的方案数为\(\frac{r-l}{2}\)。
于是可以得到:$$f[i][1]=f[i-1][0]\times\frac{pos_i-pos_{i-1}-1}{2}+f[i-1][1]\times\frac{pos_i-pos_{i-1}}{2}$$
初始值就是\(f[1][0]=1,f[1][1]=\frac{pos_i-1}{2}\)。
另外直接map记搜也能跑得飞快(甚至比递推快smg。。)
#include <cstdio>
#include <algorithm>
typedef long long LL;
const int N=100;
int p[N],f[N][2];
LL n,F[N];
int main()
{
scanf("%lld",&n);
F[1]=1, F[2]=2; int t,cnt=0;
for(t=3; (F[t]=F[t-1]+F[t-2])<=n; ++t);
for(int i=t; i; --i)
if(n>=F[i]) n-=F[i], p[++cnt]=i;
std::reverse(p+1,p+1+cnt);
f[1][0]=1, f[1][1]=p[1]-1>>1;
for(int i=2; i<=cnt; ++i)
f[i][0]=f[i-1][0]+f[i-1][1],
f[i][1]=f[i-1][0]*(p[i]-p[i-1]-1>>1)+f[i-1][1]*(p[i]-p[i-1]>>1);
printf("%d\n",f[cnt][0]+f[cnt][1]);
return 0;
}
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------