LOJ.2721.[NOI2018]屠龙勇士(扩展CRT 扩展欧几里得)
题目链接 LOJ
洛谷
rank前3无压力(话说rank1特判打表有意思么)
\(x*atk[i] - y*p[i] = hp[i]\)
对于每条龙可以求一个满足条件的\(x_0\),然后得到其通解\(x[i] = x_0 + p[i]/gcd*k\)。
怎么合并所有龙的通解?可以直接写成 \(Ans\equiv x_0(mod\ p[i]/gcd)\),用扩展中国剩余定理合并即可。
所有\(p[i]=1\)时要特判。(为啥呢...反正我知道它不对...)
所有\(p[i]=hp[i]\)时同余方程结果会是0,这显然不对。这种情况对于每条龙造成的伤害应该是p[i]的倍数(\(p[i]\mid x*atk[i]\))。算出击杀每条龙的最小的\(x\)求个\(lcm\)即可。
查了半上午发现一个问题。。
就算set里全是int,查XX_bound(long long)的话还是要用set<long long>
。。
好歹是把今年NOI两天的T1 A了(也没有多难)。不知明年会怎么样呢...
#include <set>
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define Failed return (void)puts("-1")
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define set_It std::multiset<LL>::iterator
typedef long long LL;
const int N=1e5+7;
int n,m,rew[N]/*reward*/;
LL hp[N],p[N],a[N],md[N];//Ans = a[i] (mod md[i])
std::multiset<LL> st;//!
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline LL readll()
{
LL now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline LL Mult(LL a,LL b,LL p)
{
LL tmp=a*b-(LL)((long double)a/p*b+1e-8)*p;
return tmp<0?tmp+p:tmp;
}
LL Gcd(LL a,LL b){
return b?Gcd(b,a%b):a;
}
void Exgcd(LL a,LL b,LL &g,LL &x,LL &y)
{
if(!b) g=a,x=1,y=0;
else Exgcd(b,a%b,g,y,x),y-=a/b*x;
}
void Spec1()
{
int ans=0; set_It it;
for(int i=1; i<=n; ++i)
{
it=st.upper_bound(hp[i]);
if(it!=st.begin()) --it;
if(!(*it)) Failed;
ans=std::max(ans,(int)((hp[i]+(*it)-1)/(*it)));//(int)ceil(1.0*hp[i]/(*it)));
st.erase(it), st.insert(rew[i]);
}
printf("%d\n",ans);
}
//void Spec2()
//{
// int ans=1; set_It it;
// for(int i=1,need; i<=n; ++i)
// {
// it=st.upper_bound(hp[i]);
// if(it!=st.begin()) --it;
// if(!(*it)) Failed;
// need=(hp[i]+(*it)-1)/(*it), ans=ans/Gcd(ans,need)*need;
// st.erase(it), st.insert(rew[i]);
// }
// printf("%d\n",ans);
//}
void Solve()
{
bool f1=1;//!
for(int i=1; i<=n; ++i) if(p[i]!=1) {f1=0; break;}
if(f1) {Spec1(); return;}
// f1=1;//然而数据没有这种情况...还是要有的
// for(int i=1; i<=n; ++i) if(p[i]!=hp[i]) {f1=0; break;}
// if(f1) {Spec2(); return;}
set_It it; int cnt=0;
for(int i=1; i<=n; ++i)
{
it=st.upper_bound(hp[i]);
if(it!=st.begin()) --it;
if(hp[i]&&!(*it)) Failed;
int atk=*it;
LL gcd,x0,y0,P;
Exgcd(atk,p[i],gcd,x0,y0);
if(hp[i]%gcd) Failed;
P=p[i]/gcd, x0=(x0%P+P)%P;
a[++cnt]=Mult(x0,hp[i]/gcd,P), md[cnt]=P;
st.erase(it), st.insert(rew[i]);
}
LL A=a[1],M=md[1],g,x,y,t,Mod;
for(int i=2; i<=cnt; ++i)
{
Exgcd(M,md[i],g,x,y);
if((a[i]-A)%g) Failed;
t=md[i]/g, x=Mult(x,(a[i]-A)/g,t), x=(x%t+t)%t;
Mod=M*t, A+=Mult(x,M,Mod)/*直接x*M会炸?...*/, A%=Mod, M=Mod;
}
printf("%lld\n",A);
}
int main()
{
freopen("dragon.in","r",stdin);
freopen("dragon.out","w",stdout);
for(int Case=read(); Case--; )
{
st.clear();
n=read(), m=read();
for(int i=1; i<=n; ++i) hp[i]=readll();
for(int i=1; i<=n; ++i) p[i]=readll();
for(int i=1; i<=n; ++i) rew[i]=read();
for(int i=1; i<=m; ++i) st.insert(read());
Solve();
}
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------