BZOJ.2707.[SDOI2012]走迷宫(期望 Tarjan 高斯消元)
\(Description\)
给定一张有向图,从S随机游走,输出到T的期望步数(可能无穷大)。
\(n\leq 10^4,\ m\leq 10^6\),保证每个强连通分量大小\(\leq 100\)。
\(Solution\)
一个点到达终点的期望步数 \(E_i=\sum_{(i,j)\in G}\frac{E_j+1}{out[i]}\),\(out[i]\)为点\(i\)的出度。
那么对于一个DAG可以直接在反向图上拓扑+DP求解。
于是对于环内高斯消元,缩点后拓扑+DP。
无解(无限步)的情况: 起点到不了终点;起点能够走到一个环,且在这个环内无法走到终点(走不出去)。
ps:1.T连出的边不能计算。
2.期望的计算式有个+1!
3.建反向边!
4.重边
注:
如果\(E_i\)表示从起点到点\(i\)的期望步数,那么起点可能多次到达点\(i\),\(E_i\)这个值就。。(可以就直接拿起点做例子?)
如果\(E_i\)表示到达终点的期望步数就没有这个问题。
//21136kb 5168ms
#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=1e4+5,M=1e6+5;
int n,m,S,T,Enum,H[N],to[M],nxt[M],_H[N],_to[M],_nxt[M],in[N],q[N];
int tot,bel[N],scc[N][103],num[N],sz[N],Index,dfn[N],low[N],sk[N],top;
double A[105][105],E[N],out[N];
bool vis[N],vis_s[N],exist[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
_to[Enum]=u, _nxt[Enum]=_H[v], _H[v]=Enum;
}
void Tarjan(int x)
{
dfn[x]=low[x]=++Index, sk[++top]=x, exist[x]=1;
for(int i=H[x]; i; i=nxt[i])
if(!dfn[to[i]]) Tarjan(to[i]),low[x]=std::min(low[x],low[to[i]]);
else if(exist[to[i]]) low[x]=std::min(low[x],dfn[to[i]]);
if(dfn[x]==low[x])
{
++tot;
do
{
bel[sk[top]]=tot, num[sk[top]]=sz[tot],
scc[tot][sz[tot]++]=sk[top], exist[sk[top--]]=0;
}while(sk[top+1]!=x);
}
}
void DFS(int x)
{
vis[x]=vis_s[bel[x]]=1;
if(x==T) return;//有没有都行
for(int i=H[x]; i; i=nxt[i])
if(!vis[to[i]]) /*++in[bel[x]],//Wrong*/DFS(to[i]);
}
void Gauss(int n)
{
for(int j=0; j<n; ++j)
{
int mxrow=j;
for(int i=j+1; i<n; ++i)
if(fabs(A[i][j])>fabs(A[mxrow][j])) mxrow=i;
if(mxrow!=j) for(int k=0; k<=n; ++k) std::swap(A[mxrow][k],A[j][k]);
for(int i=j+1; i<n; ++i)
if(A[i][j])
{
double t=A[i][j]/A[j][j];
for(int k=j; k<=n; ++k)
A[i][k]-=A[j][k]*t;
}
}
for(int i=n-1; ~i; --i)
{
for(int j=i+1; j<n; ++j) A[i][n]-=A[i][j]*A[j][n];
A[i][n]/=A[i][i];
}
}
int main()
{
n=read(),m=read(),S=read(),T=read();
for(int u,v,i=1; i<=m; ++i) u=read(),v=read(),out[u]+=1.0,AddEdge(u,v);
for(int i=1; i<=n; ++i)
if(!dfn[i]) Tarjan(i);
DFS(S);
if(!vis[T]) {puts("INF"); return 0;}
for(int x=1; x<=n; ++x)
for(int i=H[x]; i; i=nxt[i])
if(bel[x]!=bel[to[i]]) ++in[bel[x]];//反向图上的入度+1。
for(int i=1; i<=tot; ++i)
if(vis_s[i]&&!in[i]&&bel[T]!=i) {puts("INF"); return 0;}
for(int i=1; i<=n; ++i) out[i]=1.0/out[i];
int h=0,t=0;
q[t++]=bel[T];
// for(int i=1; i<=tot; ++i)
// if(!in[i]) q[t++]=i;//in[]=0的只能是bel[T].
while(h<t)
{
int now=q[h++];
memset(A,0,sizeof A);
for(int j=0; j<sz[now]; ++j)
{
int x=scc[now][j];
A[j][j]=1.0, A[j][sz[now]]=E[x]/*之前加上的*/;
if(x==T) continue;//不计算终点连出的边!
for(int i=H[x]; i; i=nxt[i])
if(bel[to[i]]==now){
A[j][sz[now]]+=out[x],//步数+1.
A[j][num[to[i]]]-=out[x];//是点的出度不是in[]! //-=不能直接赋值=:有重边!
}
}
Gauss(sz[now]);
for(int j=0; j<sz[now]; ++j)
{
int x=scc[now][j];
E[x]=A[j][sz[now]];
for(int i=_H[x]; i; i=_nxt[i])
if(bel[_to[i]]!=now){
if(!--in[bel[_to[i]]]) q[t++]=bel[_to[i]];
E[_to[i]]+=(E[x]+1)*out[_to[i]];
}
}
}
printf("%.3lf",E[S]);
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------