POJ.3145.Common Substrings(后缀数组 倍增 单调栈)
\(Description\)
求两个字符串长度不小于k的公共子串对数。
\(Solution\)
求出ht[]后先减去k,这样对于两个后缀A',B',它们之间的贡献为min{ht(A)}(A'到B'ht[]的最小值)。
维护一个栈,栈中ht从底到顶递减。
如果当前是求B中后缀i和前边A中子串的答案,那么记录之前的∑(ht(A)),这就是前边A对i的贡献。
然后更新这个栈,若ht[i]>ht[top],入栈即可 但不对B计算答案;
若ht[i]<=ht[top],因为公共子串是min{ht()},i入栈后要对所有ht[top-1]>=ht[i]的top-1改成ht[i],并且i出栈(期间减去当前多算的答案ht[top]-ht[top-1]),直到ht[top-1]<ht[top]
//6096K 704MS
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const int N=2e5+10;
int n,sa[N],ht[N],rk[N],sa2[N],tm[N],sk[N],val[N],bel[N];
char s[N];
void Get_SA()
{
int *x=rk,*y=sa2,m=260;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]=s[i]+1];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[i]]--]=i;
for(int p=0,k=1; k<n; k<<=1,m=p,p=0)
{
for(int i=n-k+1; i<=n; ++i) y[++p]=i;
for(int i=1; i<=n; ++i) if(sa[i]>k) y[++p]=sa[i]-k;
for(int i=0; i<=m; ++i) tm[i]=0;
for(int i=1; i<=n; ++i) ++tm[x[i]];
for(int i=1; i<=m; ++i) tm[i]+=tm[i-1];
for(int i=n; i; --i) sa[tm[x[y[i]]]--]=y[i];
std::swap(x,y), p=x[sa[1]]=1;
for(int i=2; i<=n; ++i)
x[sa[i]]=y[sa[i-1]]==y[sa[i]]&&y[sa[i-1]+k]==y[sa[i]+k]?p:++p;
if(p>=n) break;
}
for(int i=1; i<=n; ++i) rk[sa[i]]=i;
ht[1]=0;
for(int k=0,p,i=1; i<=n; ++i)
{
if(rk[i]==1) continue;
if(k) --k;
p=sa[rk[i]-1];
while(i+k<=n&&p+k<=n&&s[i+k]==s[p+k]) ++k;
ht[rk[i]]=k;
}
}
int main()
{
int k;
while(scanf("%d",&k),k)
{
scanf("%s",s+1); int l=strlen(s+1);
s[l+1]=1, scanf("%s",s+2+l), n=strlen(s+1);
Get_SA();
for(int i=2/*1*/; i<=n; ++i)
{
ht[i]-=k-1, bel[i]=sa[i]>l;
if(ht[i]<0) ht[i]=0;
}
LL res=0,tmp;
val[0]=-1;
for(int top,t=0; t<=1; ++t)
{
tmp=0, top=0;
for(int i=2/*1*/; i<=n; ++i)//ht[1]就是补充字符 计算不计算都行
{
if(bel[i]!=t) res+=tmp;
sk[++top]=bel[i]==t;
val[top]=ht[i+1];
tmp+=(LL)sk[top]*val[top];
while(val[top-1]>=val[top])
{
--top;
tmp-=(LL)(val[top]-val[top+1])*sk[top];//减去之前多余的贡献
val[top]=val[top+1], sk[top]+=sk[top+1];
}
}
}
printf("%lld\n",res);
}
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------